BMRC RESEARCH REPORT NO. 94

DECEMBER 2003

Regional rainfall estimation
using double-kriging of raingauge
and satellite ohservations

X. Sun, M.J. Manton and E.E. Ebert




BMRC RESEARCH REPORT NO. 94

DECEMBER 2003

Regional rainfall estimation
using double-kriging of raingauge
and satellite ohservations

X. Sun, M.J. Manton and E.E. Ebert

BMRC

GPO Box 1289K
Melbourne VIC
Australia 3001
Bureau of Meteorology www.bom.gov.au

Australian Government




© Commonwealth of Australia 2003
Published by the Bureau of Meteorology 2003



CONTENTS

Abstract

1.

Introduction .
1.1 Purpose .
1.2 Background .
1.3 Aims of the research .
1.4 Scope of the research
1.5 Structure of the report

2. Analysis of rainfall spatial variability and correlation
2.1 Measures of rainfall spatial variability and correlation
2.2 Sample covariance and correlogram
2.3 Covariance modelling
2.4 Results of rainfall spatial varlablllty and correlatlon
2.5 Indicator covariance and correlogram
3. Kriging and indicator kriging algorithms
3.1 Kriging
3.2 Kriging with observatlon error
3.3 Indicator kriging
4. Data and test field description
5. Incorporating satellite observations in indicator kriging
5.1 Satellite rain and no-rain algorithm
5.2 Merging satellite and raingauge indicator estlmates
5.3 Selection of rain and no-rain threshold
6. Estimation results and validation
6.1 Case study
6.2 Overall validation
6.3 Comparison with Sl and Barnes ralnfall estlmatlons
7. Summary and conclusions
References .
Appendix 1 .

Appendix 2 .

ArDRADMWWWEPE

O N~ o1 o1ol

11
12
13

14

15
15
18
19

23
23
23
29

31
32

34
36






Regional rainfall estimation using double-kriging of
raingauge and satellite observations

X. Sun, M.J. Manton and E.E. Ebert

Bureau of Meteorology Research Centre
GPO Box 1289K
Melbourne, Vic., 3001 Australia

Abstract

A method for rainfall estimation combining raingauge measurements with
satellite infrared data is presented. Estimates are generated in two steps: the
indicator kriging (IK) technigueisusedfirst to delineate the raining areas, then
ordinary kriging is used to determine the rainfall estimates in these areas. To
implement 1K, abinary variableis used to describe the raingauge rainfall. The
satellite rainfall probability of occurrence is calculated from its infrared
temperature. New methods for the merging of raingauge and satellite dataand
the selection of athreshold are discussed. Using atwo-year period of raingauge
and satellite data, the results of delineating the raining areas from indicator
kriging show an improvement over the results from using raingauge data only

and without indicator kriging, especially in raingauge data-sparse areas.






1. Introduction

1.1 Purpose

Thisreport isconcerned with Australian rainfal estimation, and focusses on the use of raingauge and
satellite data to provide better and more effective ways of improving daily raining area delineation
and spatia rainfall interpolations.

1.2 Background

Estimates of regional spatial rainfall areimportant for many applications. The Australian Bureau of
Meteorology currently producesadaily rainfall analysis over the Australian region. A rea-timegrid
point interpolation using the Barnes method (Mills et al., 1997 and Weymouith, et a., 1999a) is
available for applications in weather and flood forecasting and the validation of numerical model
output.

The primary data source in this rainfall estimation comes from the raingauge network. In
Australia, anetwork of about 1500 stations sendstelegraphic reportson adaily real-timebasis. The
spatia density of raingauge sites varies greatly across the country. Most of these telegraphic
raingauges are located a ong the coastal area, whilethevast inland area has|ess than twenty per cent
of the total number of raingauges.

Other data sourcesfor rainfall analysis, such as radar and satellite observations, arise from
remote sensing. Although radar provides rainfall measurement at high spatial and temporal
resolution, and has been applied in many rainfall analyses (e.g. Sun, 1998), its coverageislimited
over the Australian continent. Infrared (IR) satellite imagery from geostationary satellites has been
used to determine estimates of rainfall from space for nearly thirty years. The measurements of
rainfall from IR satellite imagery have shown some success on monthly or weekly time scales (e.g.
Arkinand Meisner, 1987, and Xieand Arkin, 1995). However, there are some seriouslimitationsin
relating satellite IR temperature to rainfall intensity or amount, especially on daily or shorter time
scales.

For spatia rainfall analysis, there are a number of techniques that use statistical optimal
interpolation. Daley (1991) discussed its theory and application for meteorological objective
analysis. Weymouth et al. (1999b) applied statistical interpolation (S) to rainfal estimation over the
Australian region and demonstrated better performance than the Barnes method. In this report, we
focus on the so-called kriging method, which is also an optimal statistical interpolation method.

Kriging has been widely used by geo-statisticians for spatial estimation. It is conceptually
similar to the Sl technique which has been used for rainfall estimation by Weymouth et a. (1999b).
Instead of using ana priori first guessfield of Sl, an unbiased estimate condition isused in ordinary
kriging. Kriging or cokriging have been used to estimate rainfall from raingauge data a one and by
merging with radar data (e.g. Creutin and Obled, 1982 and Seo, 1998).

There has been little work in using satellite data in the optimal estimation process. One
approach, explored by Ebert and Weymouth (1999), used a satellite no-rain threshold method in
combination with gauge observations. The no-rain observationsfrom satellitesare applied to athree-
pass Barnes successive-correction scheme (Achtemeier, 1987). Asdiscussed by Weymouth (1999a),
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the Barnes method is not a statistically optimised technique. Another recent result isfrom Grimeset
a. (1999), who used kriging to incorporate satellite data in a gauge-based rainfall estimation, and
demonstrated some success for estimation at a 10-day time scale.

The use of satelliteinfrared imagery for daily rainfall analysisisvery important for at least
two reasons. Firgt, current sparse raingauge networks over central and tropical Australia do not
provide the basic resolution required to describe the spatial distribution of rainfall. Secondly, rather
than utilising satellite datafor estimating the rainfall amount, satellite data can also be employed to
estimate the rainfall occurrence; thiswill help to delineate rainfall areas.

1.3 Aimsof theresearch
The specific aims of this report are to:

e anaysethe spatial variability and correlation of rainfall;

e determine the potentia for improved estimation by using combined raingauge and
satellite data;

» apply the kriging technique for rainfall estimation, particularly for delineation of the
raining area, and validate various approaches by using climate data;

« identify wherefurther research and devel opment are needed to improve both thetheory
and practice of interpolation.

This work is part of the continuing effort in BMRC to provide better real-time rainfall
analysisin support of operational weather forecasting.

1.4 Scopeof theresearch

In thisreport, anew approach has been developed for the delineation of rainfal. Indicator krigingis
used to describerainfall intermittency through abinary variable. Thismakesit possiblefor satellite
observations of rainfall occurrence to be included in the indicator kriging to determine the rainfall
area (but not the rainfall rate). The results of both raingauge and satellite dataindicator kriging are
effectively combined according to their error variances. The overal rainfall estimation can be
subsequently determined by kriging the rainfall within the raining areas.

1.5 Structureof thereport

The report is organised as follows. Section 2 discusses the issue of rainfall spatial variability and
correlation. Section 3 reviews the theoretical aspects of kriging and indicator kriging for rainfall
estimation. In Section 4 precipitation characteritics, including regiona variations, are presented.
Section 5 discusses satellite rainfall occurrence and the method of combining raingauge and satellite
rain and no-rain estimates. The selection of arain / no-rain threshold is also discussed. Section 6
describesthe validation experiment and presentstheresults. Thelast section providesasummary and
conclusion.



2. Analysis of rainfall spatial variability and correlation

Before we start using a variety of interpolation techniques for spatial rainfall estimation (such as
kriging), the behaviour of rainfall spatial variability and correlation over the region needs to be
addressed. In this section, basic spatial statistical theoriesthat can be applied to rainfall analysisare
first presented. Then, raingauge data are used for an analysis and the spatial variability of rainfall in
Australiais discussed.

2.1 Measures of rainfall spatial variability and correlation

For a rainfall observation Z(x) observed at point X, three second-order moments are useful in
statistical analysis. They are:

(i) The variance of the variable Z(x):

Var[Z(X)]=E{ [Z(X)-m(X)]} L1
with the first moment and expectation given by:
m(x)= E[Z(xX)] .2

(i) The covariance of avariable Z(x), is given by:

C0x %)= E{[Z(x)-m0)][Z(x)-m(x)]} .3

wherex and x; are the different spatial points. Asthe nameimplies, acovarianceisameasure of the
spatia variation.

The covariance value for a separation distance h=0 is given by:
C(0)=E{[Z(x)-m]%} = Var [Z(x)] 4

Thisidentifies the ordinary variance of all samples.

(iii) The correlogram is used to describe the spatial correlation relationship at different points. It
can be expressed as the covariance divided by its respective variances. That is,

C(x,X;)
JVar(x) Var(x; )

The covariance and correlogram are basic statistical tools for visuaising, modelling, and
understanding the spatial auto-correlation of aregiona variable.

P, X )=

2.2 Sample covariance and correlogram

The concept of second-order stationarity is needed when analysing the spatial sample covariance.
The existence of second-order stationarity of a random function requires that the expectation
E[Z(X)]=m(X) does not depend on x in alocal regime (i.e. the expectation is invariant); and the
covariance depends only on the separation distance h, thus,



C(h)=3[Z(X)Z(x+h)]-n? for all x .6

The above simplifying assumptions permit calculation of the sample covariance. Detailed
discussion on these points can be found in some atmosphere objective analysis (e.g. Daley, 1991)
and geostatistical books (e.g. Deutsch and Journel, 1992).

The covariance function described in Eqn 3 can bewritten in its sampleform separated by h
to h+4h, as:

n(h)

()—ﬂllz(x)z(X+ h) = (mn)(men) T

where n(h) isthe number of pairs separated by the distance h, z(X) isthe value at the start of the pairs
which can be called thetail value, and z(x+h) isthe value at the end of the pairswhich can becalled
the head value. m, and m., are given by

n(h)

My = (h)z Z(X) ...8

n(h)
mn=—— » Z(X+h) .9

n(h) =

Thus, m, and m,, are the mean of the tail and head values. Here, the random variable is
traditionally denoted by capital letter Z; a random variable can take a variety of specific values
(denoted by lowercase letter 2) at different locations according to some probability (frequency)
distribution.

If two variables Z and Y are selected, such as raingauge and satellite data, Eqn 7 can be
generalised to form the sample cross-covariance C,(h).

C(h)
OnO+n

o(h) = .10

Alternatively, the sample covariance can be normalised by the respective tal and head
standard deviations. This givesthe rainfall correlogram:

2 1 & 2 2
=— N'Zx)?*-m A1
T & M
1 n(h) 5 5
+h:_th:Z(X+ h)?-m?,, .12

where g, and o, are the standard deviations of the tail and head values.

If two variables Z and Y are selected, Eqn 10 can be generalised to form the sample cross-
correlogram p,(h). p(0) identifies the correlation coefficient between two variables at the same
location.
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2.3 Covariance modelling

The analysis of covariance offers a way of characterising the spatial variability of observations.
Furthermore, fitting of the observed spatial covariance is needed when calculating the kriging or SI
matrices. For this reason, modelling of the observed covariance is how considered.

Three models are frequently used in geostatistics. These are:

1) Gaussian model, given by
C(h)=Cy[ exp(-h%3a%)] .13
where a is arange of covariance and C, is a constant.
2) Spherical model, given by
C(h)=C, [1-(3h/2a)+ (h%2a°%)] .14
3) Exponential model, given by
C(h)=C, [exp(-h/a)] ...15

Inrainfall analysis, the spherical model is seldom used becauseits value may increase with
distance. The question asto whether the Gaussian or exponential model ismore appropriatetofit the
rainfall spatial datawill be discussed. The selection of the above modelling functions should also
ensure existence and uniqueness of solutions to the kriging matrix. The additional requirement to
meet these conditions is described by Journel and Huijbregts (1978).

2.4 Resultsof rainfall spatial variability and correlation

In order to reveal the spatial statistical characteristicsof rainfal, the covariance and correlation were
calculated using Eqns 7 and 10 for rainfall for each day in 1998. Pairs of raingaugesareincludedina
separation-distance category, where the categories extend from 0 to 500 kmin stepsof 10 km. Both
raining points and non-rain points are considered in the calcul ation (at least one of each pair isnon-
zero). Certain distance allowances must be added in the calculation. In order to alow for differences
between tropical and mid-latitude rainfall systems, separate statistics are cal culated north and south
of 30°S. Figure 1 and Fig. 2 show the averaged covariance C(h) and correlogram p(h), respectively,
for daily rainfall amounts through 1998. This gives climatological values for rainfall spatial
variability and correlation. In thefigures, the dashed line represents the resultsfrom the region north
of latitude 30°S and the solid line south of 30°S.

Obvioudly, rainfall sampleslocated next to each other are morelikely to have smilar vaues
than samples located further apart. A typical covariance tends to decrease with distance h between
the samples, until it reaches its minimum value. Thisrepresents the maximum range where aspatial
relationship exists within the data. The correlogram equals one at the origin, then decreases with
distance.
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Fig. 1: Average 30°S covariance C(h) for daily rainfall amounts (mm) over the
year of 1998 for the region north (30n) and south (30s) of latitude 30°S.
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Fig. 2: Average correlogram p(h) for daily rainfall amounts over the year of 1998
for the region north (30n) and south (30s) of latitude 30°S.

Thefigures show that both the covariance and correlogram fall more sharply near the origin
and reach zero at about 400 km. Thefigures also show the different characteristics at mid-latitudes
and in thetropics (north) of Australia. The correlation in the mid-latitude region falls off more dowly
than that in thetropical region. Thisisbecause amid-latitude frontal system can producelarger-scale
rainfall than tropical convective systems. A similar result was aso found by Weymouth et al.
(1999b), who plotted annua rainfall correlations for Australia, for different regions (separated at
latitude 26°S). He found that the rainfall autocorrelation for northern Australiareached avalue of 0.5
at adistance of about 35 km, compared to about 85 km in the south.

Figures 3(a) and (b) show the Gaussian and exponential modelslisted in section 2.3 fitted to
the averaged covariance using the least-squares method. The fitted range is 500 km. The average
covariance over four directions for the average of one year of datais given in the figure, which
shows the fitted functions plotted as a solid line. The data fitting in the figure indicates good
agreement when using both the Gaussian and exponential models (Egns 13 and 15). The average
fitting residual is4.74 mm for the exponential, and 11.14 mm for the Gaussian model, indicating a
better fit using the exponential model.
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Fig. 3(a): Covariance of daily rainfall (mm) fitted by the Gaussian function.
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Fig. 3(b): Covariance of daily rainfall fitted (mm) by the exponential function.

Ontheissue of which model isconsidered to produce acceptabl e approximations of thereal
covariance, Krgjewski (1987) and Seo et a. (1990), dealing with cokriging problems, estimated the
covariance and cross-covariance functions of radar and gauge data using an exponential isotropic
model. Martinez-Cob (1996) and Heves et d. (1992) used the Gaussian model for kriging rainfall
with elevation dependence. For this study, the exponential model is adopted to fit the rainfall
covariance, because the Gaussian model was sometimes too sensitive to distance and could yield
unstable solutions to the kriging equation.



2.5 Indicator covariance and correlogram

Indicator kriging is used to delineate raining areas and will be discussed in detail later in thisreport.
One of the important issues is to investigate the spatial indicator covariance and compare it to the
general covariance in the previous section. Indicator covariance reflects raining or no-rain spatial
correlation and variance. For calculation of the sampleindicator covariance and correlogram, in Eqns
71012, zisequa to onewhen it hasrain and zero when it has no rain. Because the local indicator
expectation of z equals the raining probability, the indicator covariance and correlogram measure
gpatial variation and correlation of rain and no-rain probability. Details of theindicator function will
be discussed in Section 3.3.

Figures 4 and 5 show the averaged indicator covariance and correlogram for daily rainfall
through 1998. The plots use the same data set used in Figs 1 and 2. From the figures, clearly,
indicator covariance and correlogram are range-dependent. When the range equal s zero, itsvariance
isproportional to thefraction of raining areas (seefurther in Eqns 24-26 in section 3.3). Thefigures
also show the same regional characteristics (i.e. differences between tropical and mid-latitude) of
ordinary rainfall covariance and correlogram discussed in the previous section.
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Fig. 4: Average indicator covariance for daily rainfall amounts over the year of
1998 for the region north (30n) and south (30s) of latitude 30°S.
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Fig. 5: Average indicator correlogram for daily rainfall amounts over the year of
1998 for the region north (30n) and south (30s) of latitude 30°S.
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It is seen that both the covariance and correlation in Figs 4 and 5 do not decrease as sharply with
distance as do the covariance and correlation of rainfall amount in Figsl and 2. In other words, the
rainfall indicator correlation is much higher than the correlation of rainfall itself. Thiscould lead to
improved rainfall indicator estimates.

3. Kriging and indicator kriging algorithms
3.1 Kriging

Kriging isastochastic linear interpol ation method that minimises the estimated error variances of a
localised variable. The derivation of kriging equations has been discussed by many authors (e.g.,
Creutin and Obled, 1982; Journel and Huijbregts, 1978) and used in spatia rainfall estimation in
recent years.

For arandom function Z(x) (inthiscase, rainfall at aspatial point), if the joint probability of
Z (i=1, n) hasaGaussian (normal) distribution, then itslinear estimate or conditional expectationis
optimal for akriging estimate.

We consider a location Xo with an unsampled rainfal z, and neighbouring rainfall
observations z, so that itslinear estimator can be expressed as.

E*[ZA=ElZ]+ 2 W(z-E[Z]) .16

where W, is the kriging weight and E[ Zy] is the rainfall expectation at z,. n is the gauge number.
Under the hypothesis of local stationarity of the random function Z, E[Zo] = E[Z]=m.

The weights W, are determined by minimising the unbiased kriging variance E[ Zo-E*[ Zo|Z] ]
That minimisation resultsin a set of n linear equations:

éWiC(XuXJ)"':U: C(x,,X,) j=12,...n A7

where C(x, x) are spatial covariances at different observational locations, and C(x, X) are
covariances between the observation and an estimated field point. 1 is a Lagrange multiplier in
ordinary kriging that is linked to the “unbiased” condition

z W=1 .18

In Egn 17, if 4=0, we have simple kriging, which is equivalent to the statistical
interpolation (SI) method. Sl isnot linked to the unbiased condition but requires prior knowledge of
the background field (the stationary mean mis regarded as a background field in simple kriging).

One way of estimating E[Z;] could be to use the local mean of the observed gauges,

n
m= i _Zl R under stationary conditions. It isobviously inappropriate when the gauge number islow
n i=

inlocal estimated areas. Daley (1991) suggested E[ Zo] could be derived from other sources, such as
numerical models. Weymouth et al. (1999b) used a Barnesinterpolation field as an approximation
for the background field. For simplekriging, if we do not consider the observational error to belarge
in the estimation process, its matrix can be related to the correlogram, rather than covariance.

In kriging, because the covariance matrix is positive definite, Egn 17 will always have a
solution. The kriging variance can then be derived as:

0 =CO0y+ p= 2 W C(x, %) .19

Thisisameasure of the quality of the fit to the kriging equation, rather than a measure of
local estimation accuracy.
Thekriging provides optimal estimation, relativeto other interpolation methods, in the sense

11



that it minimises the least-square error for a covariance model with the unbiased condition. The
weights W, depend on the positions of observed and calculated points and the number of
observations. The kriging covariances C used in this study employ an exponential model to fit the
actual covariance calculated from spatial rainfall data, as described in section 2.3.

For regional rainfall estimation, kriging is performed at each estimation point using a
circular search radius of 250 km. All observationsthat fall within thisradiusareincluded. Increasing
the search radiuswill significantly increase the calculation burden and has only avery small impact
on the estimates. The so-called moving neighbourhood search effectively uses the local stationary
condition and is an effective way of dealing with the nonstationary problem over alarge region.

3.2 Kriging with observation error

Rainfall data contain observation errors. These errors come frominaccurate measurement of rainfall,
lack of areal representation, and the imperfect relationship between other observations (such asradar
and satellite) and therainfall. Although error bias (systematic error) can be removed through the data
analysis, usudly it is difficult to identify random error inherent in the data.

It is noted that the two covariances C(x;, x;) and C(x;, Xo) in the kriging equation (Eqn 17)
have different statistical representations. C(x;, X;) is the covariance at different spatial observation
stations, and it subsequently contains observation error. C(x;, Xo) is the covariance between the
observational and estimation point, where the value at the estimation point should exclude
observation error.

A satistical interpolation method described in Daley (1991) gives aminimised variance by
proposing the concept of background and observation error covariances. The background error
covariance C,, isthe covariance at different locations due to the difference between the mean field
and true field. This climate or mean field corresponds to the mean or expectation field m used in
Section 3.1. Observation error covariance C, represents the covariance at different locations dueto
the difference between the observation and true field.

According to Daley (1991), for rainfall estimation, the following assumptions should be
considered. Firgt, it is assumed that the background and observation errors are uncorrelated.
Secondly, if the observation errors are regarded as uncorrel ated to each other, and the observations
are al made with the same type of instrument, the kriging equation can then be written as:

Zwicb(x,x1)+wico(>q,>«)+ U= Co( X %) ...20

Compared with kriging Eqn 17, an extraterm W.C, is added to reflect the error inherent in
the observational data. Equation 20 is equivalent to the statistical interpolation equation by Daley
(1991) used in atmaospheric objective analysis, except for the addition of the Lagrange parameter /.
Using the method explored by Daley (1991), the components of C,, and C, can be obtained from the
kriging covariance (see Appendix 1 for adetailed derivation). In our case, using the datadiscussediin
Section 2.4, C, is equal to 20 mn?’.

Considering observation error, the kriging estimator is no longer an exact interpolator; that
is, the estimated value at an observation point does not equa the observed value, and the kriging
variance is not zero at that point.

Inthisreport, we apply the above schemefor raingauge and satelliteindicator kriging aswell
as for raingauge rainfall estimation. The kriging estimator in the satellite indicator kriging can be
used to calibrate satellite rainfall observations.
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3.3 Indicator kriging

The utility of ordinary kriging for rainfall estimation is limited by particular assumptions. First,
kriging provides optimal estimation only when the probability distribution is Guassian. However, for
rainfall processes, rainfall isnot normally distributed dueto itsintermittence (large numbers of zero
rainfall) and few very high rainfall values. Secondly, the estimated weights and variances are
independent of the datavalues. These assumptions may cause kriging to overestimatein the no-rain
and low rainfall situations, and to underestimate in high rainfall situations.

Theindicator approach is one means of overcoming both of theselimitationsand, therefore,
of obtaining better estimates of rain areas. An indicator function is a binary variable representing
zero and non-zero rainfall amounts. The departure from normality in rainfal should be greatly
reduced when ‘rain’ and ‘no-rain’ are separated. A test by Hutchinson (1996) indicated the
normalising power for non-zero rainfall to be between ¥2to % for Australian rainfall. According to
Barancourt and Creutin (1992), the transformation to a binary distribution provides a nonlinear
optimal estimator. Secondly, the problem of data independence of the kriging variance is reduced
since indicator kriging is conditional on the data values.

Another compelling reason for using indicator kriging isthat the indicator covariance does
not decrease sharply with distance and it has much greater coherence compared to rainfall covariance
(discussed in Section 2). Furthermore, satellite observations provide indicator information; i.e.
rainfall occurrence probability. Thiswill be further discussed in Section 5.1.

The mathematical formulation of indicator kriging (IK) used in thisreport issimilar to the
approaches by Barancourt and Creutin (1992). Firg, it involvestransforming therainfall amount data
into aset of binary variables. Theindicator function I(x) (at location x) with zero cut-off for rainfall
datum value z(x) may be given as:

=0 Zz=0
[(x)= .21
=1 2Z2>0

Indicator kriging can be expressed in the following kriging equation:
E*[loli]:E[IO]+Z\Nj(ij_E[Ij]) .22
j=1

where E*[1¢|i] givesaspatia occurrence probability estimate, Vl/, istheindicator kriging weight and
E[lg] isaspatial occurrence probability expectation.
With the locally homogeneous condition for kriging, we have E[lg] =E[l;]= rﬁj; and

0< rﬁj <1, then

E*[1o] = \,i; +@-D i) .23
=1 =L

ThelK weight Vl/, can also befound by minimising the IK variance by solving Eqn 17 with
the specified indicator spatial covariance.

The characteristics of IK can be described by its probability distribution. We can calculate
the indicator mean as

M =E(i(x))=P(Z>0) .24

where M represents the cumul ative probability of rainfall at x during an event. It also representsthe
rainfall spatial coverage, that is, raining areas.

13



The indicator variance can be easily derived in relation to its mean as:
G7=m(1-m) .25
It can be seen that, if thereisno rain, then M =0, or if thereisrain across awhole region

then M =1, &7=0. When M =0.5, rainfall occurrence is most uncertain, and &> reaches its
maximum value of 0.25.

With the stationary condition of the mean, the indicator covariance CAZ(xi, X;) can be
expressed in the form of the rainfall probability, as

C (%, X)=P(Z>0, Z>0)- P(Z>0)’ .26

Theestimated value E*[ 1] solved from indicator kriging isaconditional probability withits
value lying between zero and one. Therefore, athreshold representing the dividing value needsto be
selected to separate rain and no-rain estimates. This can be determined by using historical rainfall
data and will be discussed in Section 5.3. Because indicator kriging, when used to delineate the
rainfall area, isultimately related to therainfall conditional probability, it ismore robust and should
improve the accuracy of the rainfall estimate.

Overal, after performing indicator kriging, ordinary kriging may be subsequently used to
determinetherainfall valuesin raining areas. Double kriging can be expressed as the product of 1K
and kriging, that is,

Z* (X)=1(x) F(x) .27

where k is athreshold, and F¥(x) represents the kriging estimate over the raining area. If indicator
kriging shows no rain (ie. 1(x)=0), then no further estimation of F¥(x) is needed.

4. Data and test field description

Australia currently has more than 6000 raingauge stations measuring daily rainfall. Of these, about
1500 telegraphic stations send daily rainfall observations in real-time. Some of these rea-time
stations only report when thereisrain. Thus, for a particular day, only about 1000 raingauges are
available for real-time access. The remaining observations are from climate raingauge stations,
whose data cannot be obtained in real-time. They are usually available for analysis a month later.

Most raingauges are located near the state capital cities and there are vast areas where
raingauge densities are less than 1 per 10,000 km?. Some desert areasin central Australiahave no
rainfall observations. Figure 6 gives the distribution of these raingauges.
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Fig. 6: Map of the Australian raingauge observation network.
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We consider satellite datafrom the Japanese Geostationary Meteorol ogical Satellite (GMS-
5), withitsinfrared (IR) channel at 10.5-11.5 um. Its spatial resolution is 5 km at nadir. The daily
minimum brightness temperatures in each pixel are averaged onto a0.25° grid.

To verify the proposed method, an “observation” network of about 800 stations has been
selected from atotal of 4300 raingauge stations, representing the actual raingauge numbersused in
real-time observations. These stations have been used as estimation stations to determine the
estimated valuesfor avalidation network of the remaining 3500 gauge sites. The validation stations
do not enter into the estimation process and are only used for validating purposes. The choice of
observed and validation location is determined randomly.

It isnoted that in the real-time data, some of the no-rain reports are unavailable. Therefore,
thereal-time data set we had to useis actually abiased data set. In the validation process, we use the
unbiased climate data because real-time raingauge numbers are considered too sparse for both
observation and validation. This may cause some inconsistencies. We compare their estimation
differencesin alater section.

Two yearsof daily rainfall data (1997-1998) from raingauge and satellite IR temperature are
used in thisanalysis. Initial data quality control is performed by the operational procedures of the
Australian Bureau of Meteorology.

The climate systemsthat affect precipitation in Australia can be crudely classified into two
typesdivided at about 30° |l atitude—tropical convective systemsin the north, and mid-latitude frontal
systems to the south. Most of the rainfall in the northern tropical area occurs in the summer wet
season, where mainly monsoon and convective activity prevail. Southern Australiacomesunder the
influence of rain-bearing cold fronts. Inland areas have | ess precipitation than those nearer the coast,
particularly in winter. In summary, the rainfall pattern over Australiais expected to vary seasonally
and geographically, so separating therainfall analysis seasonally (four seasons) and geographically
(at 30°S) should be beneficial.

5. Incorporating satellite observations in indicator kriging
5.1 Satelliterain and no-rain algorithm

Many methods have been developed for the estimation of rainfall from IR satellite imagery.
However, these agorithms have significant uncertainties when used for quantitative rainfall
estimation, mainly due to the incorrect detection of rainfall in cold, non-precipitating cirrus clouds,
and thefailureto detect rain in (relatively) warm stratiform clouds. The other reasonisthat, for most
of thetime, tropical and continental cloud areas are much larger than raining areas on IR imagery.
Experience with these satellite al gorithms suggests that the basi ¢ premise of rainfall being associated
primarily with cold cloud-top temperatures often does not hold true outside tropical regions. Ebert
and Le Marshall (1995) have tested three IR agorithms over Australia; all three overestimated the
rainfall amounts, with Root Mean Square (RMS) errors severd times greater than the mean observed
rain rate. In conclusion, IR rainfall estimates do not appear to be accurate or reliable enough to
provide quantitative daily rainfall amounts to supplement the gauge observationsin Australia.
Ebert and Weymouth (1999) proposed an aternative threshold method of estimating no-rain
areas by identifying non-precipitating cloud or the absence of rain-bearing cloud, using the
difference between the daily minimum IR brightness temperature and the climatol ogical minimum
surface temperature. Multiple thresholds were adopted by statistics according to the different climate
and topography. In this report, instead of looking for a threshold that assigns no-rain values, the
historical GMS IR data, together with the raingauge data, are first used to calculate rainfall
probability of occurrence. The threshold used to delineate raining and no-rain areas will finally be
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decided after optimal combination of the raingauge and satellite rainfall through IK estimation.

In this section, the statistical relationship between satellite temperature and rainfall
frequency is explored. Similar to Ebert and Weymouth (1999) and Coakley (1988), rather than
directly using average satellite brightness temperature, we use thetemperature difference T, between
the daily minimum brightness temperature at each pixel and the climatological minimum daily
surface temperature. These climatological minimum surface temperatures were time- and space-
interpolated from 0.25° gridded monthly average values based on 30 years of observations and
processed by the National Climate Centre.

To obtain a dtatistical relationship between temperature difference and surface rainfall
occurrencein different seasons, T4 has been matched with the frequency of raingaugerainfall Ry. Ry
can be regarded as a rainfall occurrence probability at different values of Ty. It is expected that
statistical information can be obtained from either low probability-of-occurrence rain (indication of
no rain) or high probability-of-occurrencerain. Where the frequency equals 0.5, no useful rain or no
rain information is possible.

As noted earlier, the cloud systems in northern and southern Australia differ, and so a
separate statistical analysisisappropriate. Figures 7(a),(b),(c) and (d) show therainfal frequency Ry
vs. satellite T4 in four seasons for 1998, using the validation raingauge network over the Austraia
region. It isfound that therainfall frequency varies significantly with season and location. Although
genera trends are toward cold temperaturesfor morerainfall, the relationship between Riand Tqis
largely dependent on the broad seasonal and regional variations. In mid-latitudes, particularly in
winter and spring, a T4 around —20 to—70°C correspondsto arainfall frequency of about 50 per cent,
whichismuch higher than in tropical areasand at summer mid-latitudes. Thisisdueto theincrease
of warmer stratiform precipitation in frontal systems, and it gives an indication of the difficulty in
detecting raining areas. In tropical areas, T4 could fall to—100°C or lower, with ahigher frequency
particularly in the wet season (November to April the following year), where convective activity
prevails. In tropical areas, the relationship is close to linear.

The consistency of these results has been checked against 1997 data, and similar seasonal
and regional variations were found.

—--305 South

__-30S Noith

Fain fraquency
-]

120 100 = 80 —40 20 [
Tt

Fig. 7(a): Rainfall frequency as a function of temperature difference between
daily minimum brightness temperature in each grid box and climatological
minimum daily surface temperature (December 1997 - February 1998).
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Fig. 7(b): Rainfall frequency as a function of temperature difference between
daily minimum brightness temperature in each grid box and climatological
minimum daily surface temperature (March - May 1998).
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Fig. 7(c): Rainfall frequency as a function of temperature difference between
daily minimum brightness temperature in each grid box and climatological
minimum daily surface temperature (June - August 1998).
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Fig. 7(d): Rainfall frequency as a function of temperature difference between
daily minimum brightness temperature in each grid box and climatological
minimum daily surface temperature (September - November 1998).
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5.2 Merging satellite and raingauge indicator estimates

Having obtained both raingauge and satellite indicator kriging estimates, the next step isto combine
the two indicator estimates with aweighting function, based on their spatial and error parameters.

Inthe merging of two spatial observational datasets, cokriging isconsidered to be capable of
handling amulti-variable situation by considering both the auto-correl ation of each variable and the
cross-correlation among them. Some studies of using cokriging for spatial rainfall estimation can be
found in Krgjewski (1987) and Sun (1998). However, cokriging is computationally expensive for
rainfall estimation at regional scales when a neighbourhood search scheme is applied.

A much simpler approach is used here. Conceptually similar to cokriging, Rodgers (1976),
in studying the combination of satellite thermal radiation with surface temperature, used a linear
optimal minimising estimate. After assuming that the error variances represent independent
measurement devices, he derived away of combining two independent measurements by taking a
weighted average related to their error variances. For our applications, if the two independent
measurements are raingauge and satellite rainfall indicators, the combined estimates can be
expressed as.

2 2
Ii: IS |i + O-ig |iS ...28
02 +02 g 0'.2 +02

ig is ig is

where |; denotes the combined indicator estimates, |4 isthe rainfall estimate from gauge indicator
kriging and |5 is the rainfall estimate from satellite indicator kriging over a location, Uigz isthe
gauge indicator error variance and ¢ié’ is the satellite indicator error variance.
The combined error varianceis
1 1

2 -1
ol = () .29

ig is

It can easily be proved that &% issmaller than either dig” or dis”. Therefore, if the different
observations areindependent (in our case: raingauge and satellite), an appropriate combined estimate
(i.e. Egns 28-29) should reduce uncertainty even if one of the observations is less reliable; for
example, an observation from a satellite.

It is noted that, rather than using the kriging variance, the error variance is used. Thisis
because the kriging indicator variance only provides ameasure of kriging indicator correlation and
configuration itself, and is not directly related to the rainfall observations. Therefore, it is not a
measure of data validation performance. The error variance is derived from its IK estimation and
gauge validation data. It isthe mathematical combination of the kriging variance and the observation
error variances. On the other hand, satellite error variance arises mainly from the observationsrather
than the kriging method itself.

Finally, it is obviousthat the number of raingauges used in the estimation has an impact on
the accuracy of thekriging estimates. Asaresult, the error variance estimated from gauges has been
related to the number of gauges used in each neighbourhood search process.

Both the error variance and kriging variance have been studied asfunctions of the number of
raingauges. This has been shown that both variances decrease asraingauge numbersareincreased. In
general, the magnitude of error variance is smaller than that of the kriging variance.

Regression of the raingauge error variance against the number of raingauges Ng (see Fig. 8)
isfound to give:

0’g =-0.0015Ng+0.157 .30
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Fig. 8: Fitted relationship of error variance with raingauge number.

Satellite data are specified on aregular grid, and so the same number of gridsisusedin loca
estimation. Its average kriging error variance is constant. We allow for a geographical difference
between the south and north of the Australian region. Then, we find

, 012 tropical area (latitude >-30°)
O(X) = .31
015 mid-latitude area (latitude <-30°)

Thedifferences between satellite and raingauge variances give an indication that, in the case
of asparse gauge network area, satellite data have agreater weight. Thusthe uncertainty in asparse
gauge network can be reduced.

5.3 Sdection of rain and no-rain threshold

As the combined estimated rainfall from Section 5.2 represents rainfall occurrence probability, an
appropriate threshold needs to be determined. This cut-off value (k in Egn 27) is used to finally
separate theraining and no-rain areas. Currently, thereisno theoretical approach for the selection of
the threshold. In this report, the unbiased threshold is determined by validation, using the actua
rainfall estimation data set.

One way of achieving this objective is to use a contingency table and its verification
parameters (Stanski et a., 1989). This approach isoften used in the verification of binary variables.
For the rainfal indicator validation, the category can be divided into four numbers. N1 to N4,
representing different outcomes in a contingency table, as shown in Table 1.

Table 1: Rain and no rain contingency table.

Observed no rain Observed rain

Estimated no rain N1 N2

Estimated rain N3 N4
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In Table 1, N1 and N4 represent correctly estimated numbers and N2 and N3 represent
incorrectly estimated numbers for observed (validated) no rain and rain results respectively. From
Table 1, agoodness score Scan be defined asthe number of correctly estimated minusthe number of
incorrectly estimated over the total number of points:

oo NL+N4-N2-N3

= .32
N1+ N2+ N3+ N4

where Svaries from -1 tol. Higher scores indicate more correct estimates.

Subsequently, biases B; and B, can be defined as the number of estimated divided by the
number of observed events for no rain and rain categories.

N1+ N2
B —

= .33,
N1+ N3
N3 + N4

B, = .34
N2 + N4

Obvioudly, when the biasequalsone, thereisno biasat al. When the biasissmaller than 1,
therain or norain areas are underestimated, while values of biasgreater than 1 imply overestimation.

In the process of salecting the optimised threshold, for each threshold value between Oto 1,
a contingency table and associated parameters have been calculated separately to test the
performance of indicator kriging estimates. Valuesare cal culated at about 3800 vaidating raingauge
locations over the whole region.

Figures 9(a) and (b) show the goodness score S as a function of threshold for different
specific situations. Two rainfal events are investigated, with one weak rainfall case (1-2 Jan 1998
when average rainfall was about 1.5 mm over the region) and one widespread rainfall case (11-12
Jan 1998 when the average rainfall was about 5 mm). With atotal of about 8700 validation points
calculated in Eqn 32 (sum of N1 to N4), the number of correct estimates (N1 and N4) increaseswith
threshold. Meanwhile, the number of incorrect estimates (N2 and N3) also startsto increase at the
high threshold. S will reach a maximum value when the threshold is around 0.5 in both cases.

Figures 10(a) and (b) give the variations of B; and B, values at different thresholds for the
same cases. From the figures, it appears that when the threshold is around 0.4, both B, and B, are
approximately equal to one. Thisindicates the least biased values of B; and B, are obtained at this
point. The unbiased threshold derived from B; and B,is 0.4 instead of 0.5 because the data set tends
to be biased towards no rain cases.

Finally, Figs 9(c) and 10(c) give the goodness score and bias values over two-week data.
They are consistent with the results shown in previous figures. The other testsal so show that the best
thresholds derived from the goodness score and bias value were not sensitive to the regional and
seasonal variations, although the shapesin the figures of score and bias might change.

In conclusion, if thethreshold istoo small then wewill wrongly identify some of the no-rain
areasasraining areas, particularly in weak rainfall cases. If the threshold istoo high wewill wrongly
identify somerain areas as no-rain areas, particularly in widespread rainfall cases. A balance can be
reached when the optimal threshold is selected. From the results considered here, athreshold of 0.45
is chosen for our rainfal analysis.
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Fig. 9(a): Goodness score S at different thresholds (1-2 January 1998).
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Fig. 9(b): Goodness score S at different thresholds (11-12 January 1998).
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Fig. 9(c): Goodness score S at different thresholds (two weeks data, January 1998).

21



O RPN WS oo N

0 0.2 0.4 0.6 0.8 1
Thresholds

Fig. 10(a): Variations of B; and B, Bias values at different thresholds
(1-2 January 1998).
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Fig. 10(b): Variations of B; and B, Bias values at different thresholds
(11-12 January 1998).
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Fig. 10(c): Variations of B; and B, Bias values at different thresholds
(two weeks data, January 1998).
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6. Estimation results and validation
6.1 Casestudy

First, atypical case of daily rainfall estimation is presented; this gives a general overview of how
these methods perform. Figures 11 (a)—(d) give aseries of plots of daily rainfall estimatesby using
different methods for 25 November 1998. They are gauge kriging rainfall estimation without
indicator (GK), satellite rainfall occurrence probability (SP), gauge and satellite rainfall area
delineation using indicator kriging (GSIK) and gauge and satellite rainfall estimation using double
kriging (GSDK). Theradius of the search domain is 250 km for all the methods. In Fig. 11(a), black
areas indicate no-gauge areas. For comparison, Fig. 11(e) shows all station locations of rainfall

validation data (5190 raingauges from climate stations) on the same day, with symbol ‘+

representing sites that recorded preci pitation and dots representing no precipitation. Real-time data
for 1075 raingauges are used as the observationa network. The estimation is carried out on a0.25°
grid. In this event, due to a tropical low pressure and a subtropical front system, the rainfall was
strongly convective. The measured 24-hour maximum accumulated rainfall was 109 mm for the
raingauges (rainfall mean over the continent is 5.5 mm; standard deviation 12.2 mm).

Figure 11(a) showstheresultsof rainfall estimation performed by kriging without using IK.
Comparedto Fig. 11(e), it seemsthat the raining areaderived from kriging is overestimated, mainly
through falsely producing raining areas at severa locations. The delineated rainfall areaderived from
GSIK (Fig. 11(c)) seems more redlistic and is well fitted to the validation results (see Fig. 11(e)).
Thedelinested rainfall areain Fig. 11(c) isalso consistent with the occurrence probability of satellite
rainfall estimation SP (Fig. 11(b)). Thisisimportant for the no-gauge data area, where the satellite
may capture the rainfall area. For example, the rainfal area located around 24°S 126°E was
identified by satellite data (see Fig. 11(b) and (c)), where no raingauges exist (we cannot estimate the
rainfall amount). We plotted these areas as black in Fig. 11(d) to indicate araining area.

The figures show that double kriging (GSDK — Fig. 11(d)) not only effectively combines
gauge and satellite data and correctly reflects the rain and no-rain variations, but also provides
optimal rainfall estimatesin comparison with simplekriging methods (Fig. 11(a)). Also, theraining
areaisidentified in the no-raingauge area.

6.2 Overall validation

To compare the overall performance of rainfall estimation techniques based on various kriging
techniques, validation is carried out using Mean Absolute Error (MAE) and Root Mean Square
(RMS) asindicators of performance. The functions MAE and RMS are calculated by comparing
estimated rainfall with observed rainfall from validation gauge stations (average of about 3500), and
we investigate the average error value over all validation gauge locations for each day and over the
two-year period (1997-1998). The indicator function and rainfall estimates are calculated from
observational raingauges, which are independent of the validation raingauges (see Section 4). We
first look at the performance of indicator kriging using gauge indicator, satellite indicator and
satellite with gauge indicator functions. Then we validate the overall performance of using kriging
and double kriging on rainfall estimation.
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Fig. 11(a): Daily rainfall
estimates using the kriging
method (without indicator
kriging) on 25 Nov. 1998.
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Fig. 11(b): Daily rainfall
probability from satellite data
on 25 Nov 1998.
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Fig. 11(c): Daily rainfall area using the
indicator kriging method on 25 Nov 1998.

Fig. 11(d): Daily rainfall
estimates using the double
kriging method incorporating
satellite data on 25 Nov 1998.

To check the effectiveness of using satellite dataas an indicator, we vaidated the estimation
of rain areaover a sparse raingauge region in tropical and central Australia (14-32°S, 120-138°E).
First, for rainfall areadelineation, indicator estimates are calculated using gauge dataonly (GIK) and
gauge datatogether with satellite data (GSIK). The MAE errors of GIK and GSIK are calculated for
each day; in total about 670 days. The MAE error difference (i.e., GSIK-GIK) is calculated and
plotted in Fig. 12 (negative va ues give indication of improvement by including satellite data). The
horizontal coordinate gives the mean of the indicator function from validation raingauges,
representing the percentage of raining gauges over total raingaugesin the whole area, and itsvalue
varies from no rain (0) to the maximum raining percentage of about 62 per cent. The results show
that the number of daysthat satellite data have improved the estimatesisthree times higher than the
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Fig. 11(e): Daily rainfall observations from validation raingauges on 25
November 1998

number of days that have worsened them. The improvement using the GSIK method is particularly
significant in awidespread rainfall situation. Thisisbecause the sparse raingauge network isunable
to detect rainfall in some locations. At the same time, satellite data can detect rainfal in those
locations where satellite occurrence probability is high. Figure 12 also shows that even in aweak
rainfall situation, the absolute error difference is small and that satellite data can still improve the
estimation by detecting areas of no rain.
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Fig. 12: Plot of MAE error differences (GSIK-GIK) on different days with different
rainfall percentages.

Table 2 gives the average values of RMS and MAE for different indicator krigingsin the
above central and tropical gauge sparse area. They are averaged over the two-year period. Mean and
standard deviation of both validated (marked as V-data Mean, V-data Std) and estimated rainfall
(marked asKriging Mean, Kriging Std). They are expressed in indicator value. Here, “no indicator
kriging” means normal kriging (GK) is applied (where estimates greater than zero are regarded as
raining areas).
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The use of indicator kriging (both GIK and GSIK) proved to be significantly better than
kriging without an indicator (GK) when estimating the raining area, because IK optimisesthe rain
area estimates. Thus, optimal estimators are provided by improving the estimation of the non-
Gaussian distribution of rainfall.

Table 2: Indicator kriging validation results for averaged daily rainfall area
in central and tropical gauge sparse area.
V-data V-data Kriging Kriging RMS MAE
Mean Std Mean Std
No indicator kriging (GK) 0.16 031 0.25 0.37 0.37 0.16

Gauge indicator kriging 0.16 0.31 0.10 0.24 0.34 0.14
(GIK)

Satellite indicator kriging 0.16 0.31 0.12 0.23 0.33 0.14
(SIK)

Gauge + sat indicator 0.16 0.31 0.12 0.25 0.32 0.12
kriging (GSIK)

Similar results can befound in Table 3, where the validation over thewhole Augtraliaregion
isconsidered for these four methods. However, the differences between Table 2 and Table 3 are seen
in the success of the satelliteindicator, SIK, relative to the gauge-based indicator. The SIK performs
better in the tropical areathan it does over the whole Australian region. The satellite data itself is
expected to work better in the tropical area because of its good temperature-raining relationship
compared to the case for mid-latitudes. The better performance of the satelliteindicator aso comes
from its high spatial resolution. Secondly, only small numbers of raingauges are located in the
tropics. In contrast, over the south-east Australian region, thetotal number of raingaugesisvery high
compared to the tropics (and could be as much as 10 times higher). Therefore, the weighting of the
indicator in GSIK takes much greater account of the gauge indicator.

Table 3: Indicator kriging validation results for averaged daily rainfall area
over the Australian region.
V-data V-data Kriging Kriging RMS MAE

Mean Std M ean Std
No indicator kriging 0.25 0.41 0.45 0.47 0.50 0.25
(GK)
Gaugeindicator kriging  0.25 0.41 0.24 0.40 0.37 0.14
(GIK)
Satellite indicator 0.25 0.41 0.11 0.21 0.46 0.21
kriging (SIK)
Gauge + sat indicator 0.25 0.41 0.24 0.40 0.36 0.13
kriging (GSIK)

Due to sample statistics, the validation gauge locations tend to be in regions where the
overall gauge density isrelatively high. Rainfall analysisisusually performed on aregular grid, and
the gauge density is often sparse around many of the grid points. A test is therefore performed to
study the impact of gauge density on the estimated rainfall area by gradually reducing the observed
raingauge numbers. Figure 13 showsthe MAE for the three methods of IK estimates asafunction of
raingauge number. These are average results over the two-year data set using 4000 validation
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raingauges. The MAE for the satellite estimate SIK is only determined by the validation locations
and is therefore constant. The figure shows that estimates from GSIK are always better than for a
gauge-only method GIK, until no observational gauge exists. In that situation, the GSIK tendstothe
satellite estimate and GIK tends to the value where all the estimated values are zero.

Figure 13 showsthat, although on average the satellite rain areaestimation isrelatively poor
compared to the dense gauge network, it can improve the estimatein areaswhere thereare no, or few
gauges. Without satellite data, zero rainfall is assumed in regions where there are no gauges.

gauge
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Fig. 13: MAE errors for three methods of indicator kriging estimates with
different raingauge numbers.

To verify the impact of raining coverage on the performance of indicator kriging, atestis
aso performed for indicator kriging by separating the validation raining areainto threerainfall area
categories: rain areagreater than 50 per cent, lessthan 20 per cent and between 20 and 50 per cent.
The results seem consistent regarding the performance of different methods in the report. For
obvious reasons, the satellite is more effective if the rain areais >50 per cent.

For rainfall estimation over the identified raining areas, the overall performance of double
kriging is calculated and differences from other methods are shown in Table 4. Measured by RMSE
and MAE, the gauge and satellite kriging (GSDK) performs best. However, double kriging may
produce a mean bias of about 5 percent because most of the optimal estimation methods tend to
underestimate the results (smoothing effect); the bias may also come from the indicator kriging
where it may remove some gauge observations. Secondly, Table 4 showsthat theimprovement from
GSDK isaso margina compared to GDK. Further tests show that GSDK has a somewhat greater
impact asthe number of gaugesisreduced. One reason for the small impact of satellite dataon actual
rainfall estimatesisthat satellite datacan only provideraining information in theindicator estimation
process, but they are not used to estimate the rainfall amounts. Therefore, for the second kriging only
the gauge dataareinvolved in theraining area. In conclusion, indicator kriging does not haveagreat
impact on rainfall amount estimations.

Further tests have also been performed by separating validations of the raining areainto
weak (rainfall lessthan 1 mm), medium (between 1 and 5 mm) and heavy rain (greater than 5 mm)
categoriesfor doublekriging. Again, performance of the different methods seems consistent, except
for the differences in their absolute values.
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Table 4: Double kriging validation results for daily rainfall (mm)
over the Australian region.

V-data V-data Kriging Kriging RMS MAE

Mean Std Mean Std
Single no indicator 2.04 6.47 2.03 5.17 459 142
kriging (GK)
Double gauge (GDK) 2.04 6.47 1.92 5.16 4.59 1.37
Double g+s (GSDK) 2.04 6.47 1.92 5.15 4.57 1.35

Finally, it is worthwhile to test the sensitivity of the number of raingauges to the kriging
estimates and the impact of using the real-time daily rainfall database. First, atest is conducted to
assess the impacts of different observation sets and validation sets by doubling the number of
observation stations (around 1600 raingauges).

Table 5 iscalculated using the increased number of observing stations. Compared to Table
4, the same conclusions regarding the performance of different methods remain valid. RMS and
MAE errorsin Table 5 are reduced due to the increase in the number of raingauges. V-data mean
and V-data Std have changed little, indicating stable statistics. However, there is some increasein
bias in the kriging mean.

Table 5: Double kriging validation results for daily rainfall (mm) over the
Australian region using around 1600 gauges.

V-data V-data Kriging Kriging RMS MAE

Mean Std Mean Std
Single no indicator 2.03 6.46 191 5.17 452 137
kriging (GK)
DB gauge (GDK) 2.03 6.46 181 517 4.54 1.32
DB g+s (GSDK) 2.03 6.46 181 5.15 452 131

In the same manner, for indicator kriging, Table 6 is calculated from the increased number
of stations. Compared to Table 3, again, nearly the same results can be found. Because the satellite
dataremains the same, the result is even more stable compared to Tables 1 and 4.

Table 6: Indicator kriging validation results for averaged daily rainfall area
over the Australian region using around 1600 gauges.

V-data V-dataStd Kriging  Kriging RMS MAE

M ean M ean Std
No indicator kriging 0.25 041 0.47 0.48 0.52 0.28
(GK)
Gauge indicator 0.25 0.41 0.25 0.41 0.37 0.14
kriging (GIK)
Satellite indicator 0.25 0.41 0.11 0.21 0.46 0.21
kriging (SIK)
Gauge + sat 0.25 0.41 0.26 0.41 0.36 0.14
indicator kriging
(GSIK)
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Until now, we have used the climate raingauge network for model verification. As our
purpose isto establish areal-timerainfall anaysis system, we therefore need to test the use of real-
time data for observations while using climate data for validation. The following calculation is
conducted for athree-month data period. Table 7 shows the validation results calculated from the
climate stations and Table 8 is calculated from real-time observations. In genera, the same
conclusion regarding the performance of different methods remains valid, biases and errors
decreased when using real-time data. Thisis because the real-time observations are biased towards
higher rainfall.

Table 7: Double kriging validation results for daily rainfall (mm)
over the Australian region using climate raingauges.
V-data V-dataStd Kriging Kriging RMS MAE

Mean Mean Std
Single no indicator 242 8.01 242 6.20 6.09 194
kriging (GK)
DB gauge (GDK) 242 8.01 2.22 6.20 6.11 1.84
DB g+s (GSDK) 242 8.01 2.24 6.19 6.08 1.83

Table 8: Double kriging validation results for daily rainfall (mm)
over the Australian region using real-time raingauges.

V-data V-dataStd Kriging Kriging RMS MAE

Mean M ean Std
Single no indicator 2.42 8.01 2.49 6.55 5.58 1.79
kriging (GK)
DB gauge (GDK) 242 8.01 2.40 6.56 557 1.76
DB g+s (GSDK) 242 8.01 241 6.56 557 1.73

6.3 Comparison with SI and Barnesrainfall estimations

Since Barnes rainfal estimation is currently being used in operational analysis and statistical
interpolation (SI) (developed by Weymouth et al. (1999b)) for Australian rainfall analysis, it isuseful
to compare the performances of the SI, Barnes and kriging techniques. As stated earlier (Section 1.2
and 3.1), the Barnes technique is a successive-correction interpol ation scheme (Achtemeier, 1987)
using the weighting functions. Weymouth et al. (1999a) used athree-pass Barnes analysisto estimate
the daily rainfall over the Australian continent. The Sl technique is structurally similar to kriging
except that it requiresabackground field asafirst guess (somereferencesalso cal it smplekriging).
Thatis, in Egn 16, therainfall expectation E[ Zy] isreplaced by abackground field, and without the
“unbiased” condition of Eqn 18. Therefore, the Sl linear estimator can be written as (Daley, 1991):

fa=fui+ ,g,n W; (o — ) ...35

wheref, isthe estimated rainfall and fy,; isthe background rainfall at the estimation pointsand f,; is
the observed rainfall at the different observation locations.

To estimate error variance, by defining the true rainfall T and applying T in both sides of
Eqn 35, the weights W; can be determined using statistical least squares estimation by minimising
the unbiased error variance E[f4- T;]% as described in section 3.1 and by authors such as Daley
(1991) and Weymouth et al.(1999b). That minimisation results in a set of N linear equations
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expressed by aweight matrix.
Therefore, the solution of Eqn 35 (a detailed derivation can be seen in Daley, 1991) gives
the following least-square optimal estimates expressed in matrix form as

W;=B;"[B+O0]* ...36

where B are the [jxj] background and observational error covariance matrices. B;' is a covariance
vector from the observation points to an estimated point. The superscript —1 indicates an inverse
matrix and matrix O is observationa error covariance.

The SI method we used here is from Weymouth et al.(1999b). The steps required for S|
andysis arelisted asfollows:

(1) Determine suitable background fields. A problem may occur here because we do not
have suitable background fields. Weymouth et a. (1999b) use three-pass Barnes estimates as a
background field.

(2) Determine and fit the background field function. The function chosen in Sl is:

C=(2+r/L) exp(-r/L) .37

(3) Determine observational and background error variances.
(4) Check data normality and Sl parameter selection etc.

For our study, the same validation data sets were used as in the previous validation. Table 9 lists
comparison results for Sl, three-pass Barnes and kriging. The RMS and MAE from kriging are
smaller than the results from the Sl and Barnes techniques, with less mean bias. The better results
from kriging may be because the first guess field is better determined in kriging than in the Sl
technique. Moreover, double kriging further reduces the estimated error compared to Sl and Barnes,
due to the influence of indicator kriging.

Table 9: Sl and kriging validation results for daily rainfall (mm)
over the Australian region.

V-data V-dataStd Analysis Analysis RMS MAE

Mean Mean Std
Kriging (GK) 2.04 6.47 2.03 517 4.59 1.42
Barnes 2.04 6.47 1.88 491 4.80 1.45
Sl 2.04 6.47 1.70 4.80 4.75 1.43
Double Kriging 2.04 6.47 1.92 5.15 4,57 1.35

(GSDK)

It should be noted that conclusions drawn from comparisons of the SI, Barnes and kriging
areonly valid for our case studies. Although most of the parametersin these methods are sel ected to
beidentical, there are still parametersthat are dependent on their own formulation and assumption.
For instance, the characteristics of the SI analysis can rely on the guess field used, and on precise
formulation of the spatial correlation functions. Therefore, the superiority of kriging over Sl and
Barnesisrelevant only to the particular circumstances of the report; it should not beinterpreted asa
more general conclusion.
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7. Summary and conclusions

In this study, amethod is presented for producing spatia daily rainfall analyses over the Australian
region. The kriging method is used to implement spatia interpolation with a moving search
technique over the region. The approach described here allows more effective use of satellite-based
and raingauge-based observations for precipitation estimates. A particular interest is exploring the
capability of delineation of theraining area. Indicator kriging provides away of spatia interpolation
inaprobability sense. It istheoretically better than ordinary kriging for the purpose of delineating the
raining area. For the satellite-based detection of theraining area, adtatistical relationship between IR
temperature and rainfall occurrenceis derived. Kriging is aso used to calibrate the satellite datato
remove the observational bias. The optimised combination of rainfall indicator information derived
from both raingauge and satellite indicator kriging gives arainfall occurrence probability. Weights
arederived from the error variances determined from avalidation data set, then used to combinethe
gauge and satellite data occurrence probabilities, a concise and practical way of avoiding the
complexity of cokriging. Using the contingency table, an unbiased threshold is determined by
maximising the number of correct estimates and minimising the number of incorrect ones. After
selecting an appropriate threshold, the raining area can be decided. The amount of rainfall can then
be determined in the raining area by kriging of data from raingauges.

Indicator kriging gives better estimates than traditional kriging without indicator estimates
for the delineation of the rain and no-rain areas. Use of satellite data in the indicator kriging
improves the rain delineation, particularly in tropical areas where the raingauge network is sparse.
For rainfall estimation over raining areas, athough kriging improves estimates over the Sl and
Barnestechniques, theimprovement of doublekriging is marginal compared to simplekriging after
using indicator kriging. This is so because, athough indicator kriging can give an indication of
raining areas, it is not used to estimate the rainfall amount.

Further work may involve theimprovement of rainfall estimation in raining areas. Prospects
for thiswill be further enhanced when satellite microwave sensors are considered. Experiments by
Ebert and Manton (1998) indicated that rainfal rates estimated from the Specia Sensor
Microwave/lmager (SSM/I) had a better correlation with radar rainfall than other satellite remote
sensing methods, particularly over the ocean, where raingauge data are not available. The use of
SSM/I and IR satellite data could potentially improve both the rain and no-rain estimates and the
rainfall amount in raining areas.
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Appendix 1
1. Derivation of kriging equation with observational equations (derivation of Egqn 20).

From kriging Egn 16, we have
ZW C(x,x)+u=C(x,,x,) LAl

As stated in the report, C(x;, ;) is the covariance at different spatial observation stations, and it
contains observation error. C(X;, Xo) is the covariance between the observational and estimation
point, where at the estimation point the estimation should exclude from observation error.

C(x, %)=E[(z- E[Z])([Z- E[Z])] A2

A.2 can be further expressed as
C(xi, X;)=E[(Z- E[Z]+ Ti-T)([Z- E[Z] + T-T))]
= K [(Z-T)~E[Z]- T)[(Z-T)- (E[Z] -T))]}
=E[(Z-Ti)(Z-T)]-EL(Z-T)(E[Z] -T)I- E[(E[Z] -T)(Z-TYI+E[(E[Z] -T) (E[Z] -T)] s
wherein (A.3) E[(Z-T;)(Z;-T;)] can be called observation error covariance;
E[(E[Z] —T;)(E[Z;] -T;)] can be called background error covariance; while E[(Z;-T;)(E[Z] -T;)] isthe
covariance between background error and observed error.
For the covariance between background error and observed error, onewould expect it isuncorrel ated
for the reason that the rainfall bias has already been removed and only the random error exists
(Daley, 1991), i.e.
E[(Z,'T,)(E[ZJ] 'Tj)] =0 A4
E[(E[Z,] —Ti)(Zj-Tj)] =0 ...A5

If the observation errors are regarded as uncorrelated to each other and only related to themselves
and are all made with the sametype of instrumental observation; i.e., covariance of observed error at
different points equals zero, and the covariance of the observed error at the same point equals one.
Then:

E[(Zi-Ti)(Zj-Tj)] =G, ...A.6
Finally;

C(Xi, X]-): C,+GC, AT

On the right-hand term, similar to the above, we have
C(x;, Xo)= E[(E[Z] - Z)([E[Zc]-T0)]
=E[(E[Z]-T; - Z; + T)) (E[Zo]-To)]
=E[(Zi-Ti) (E[Zd]-To)]+E[(E[Z]- T}) (E[Zo]-To)]
= E[(E[Z]- T}) (E[Zc]-To)]
= Cb ...A.8

2. Derivation of C, and C,from C.

In Egn 20, we need to obtain C, and C, from C.
First, assume C=Cy? F(r), C, =Eo? F(r), Cy =E52 F(r). F(r) isacorrelogram model and isdescribed in
Section 2 (Egns 13-15).
From A.3, when the separation distance equals zero, we have
C02:E§+E§ ...A.9



From the correl ogram, when the separating distance tends to zero, we have (Daley, 1991)

2
E, A0

e

p can befound by measuring the proportions at the zero distance from the cal culated covariance and
the covariance extrapolation from the small distances.

Therefore
Ep’=pCy” LA
E.2=Co? (1-p) AL

For more discussion on thistopic, refer to Daley (1991).
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Appendix 2

Flowchart of Kriging Programming
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