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Abstract 
 
 

A method for rainfall estimation combining raingauge measurements with 

satellite infrared data is presented. Estimates are generated in two steps: the 

indicator kriging (IK) technique is used first to delineate the raining areas, then 

ordinary kriging is used to determine the rainfall estimates in these areas. To 

implement IK, a binary variable is used to describe the raingauge rainfall. The 

satellite rainfall probability of occurrence is calculated from its infrared 

temperature. New methods for the merging of raingauge and satellite data and 

the selection of a threshold are discussed. Using a two-year period of raingauge 

and satellite data, the results of delineating the raining areas from indicator 

kriging show an improvement over the results from using raingauge data only 

and without indicator kriging, especially in raingauge data-sparse areas.  
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1. Introduction 
 
1.1  Purpose 

This report is concerned with Australian rainfall estimation, and focusses on the use of raingauge and 
satellite data to provide better and more effective ways of improving daily raining area delineation 
and spatial rainfall interpolations. 

 
1.2  Background 

Estimates of regional spatial rainfall are important for many applications. The Australian Bureau of 
Meteorology currently produces a daily rainfall analysis over the Australian region. A real-time grid 
point interpolation using the Barnes method (Mills et al., 1997 and Weymouth, et al., 1999a) is 
available for applications in weather and flood forecasting and the validation of numerical model 
output.  

The primary data source in this rainfall estimation comes from the raingauge network. In 
Australia, a network of about 1500 stations sends telegraphic reports on a daily real-time basis. The 
spatial density of raingauge sites varies greatly across the country. Most of these telegraphic 
raingauges are located along the coastal area, while the vast inland area has less than twenty per cent 
of the total number of raingauges.  

Other data sources for rainfall analysis, such as radar and satellite observations, arise from 
remote sensing. Although radar provides rainfall measurement at high spatial and temporal 
resolution, and has been applied in many rainfall analyses (e.g. Sun, 1998), its coverage is limited 
over the Australian continent. Infrared (IR) satellite imagery from geostationary satellites has been 
used to determine estimates of rainfall from space for nearly thirty years. The measurements of 
rainfall from IR satellite imagery have shown some success on monthly or weekly time scales (e.g. 
Arkin and Meisner, 1987, and Xie and Arkin, 1995). However, there are some serious limitations in 
relating satellite IR temperature to rainfall intensity or amount, especially on daily or shorter time 
scales.  

For spatial rainfall analysis, there are a number of techniques that use statistical optimal 
interpolation. Daley (1991) discussed its theory and application for meteorological objective 
analysis. Weymouth et al. (1999b) applied statistical interpolation (SI) to rainfall estimation over the 
Australian region and demonstrated better performance than the Barnes method. In this report, we 
focus on the so-called kriging method, which is also an optimal statistical interpolation method.  

Kriging has been widely used by geo-statisticians for spatial estimation. It is conceptually 
similar to the SI technique which has been used for rainfall estimation by Weymouth et al. (1999b). 
Instead of using an a priori first guess field of SI, an unbiased estimate condition is used in ordinary 
kriging. Kriging or cokriging have been used to estimate rainfall from raingauge data alone and by 
merging with radar data (e.g. Creutin and Obled, 1982 and Seo, 1998).  

There has been little work in using satellite data in the optimal estimation process. One 
approach, explored by Ebert and Weymouth (1999), used a satellite no-rain threshold method in 
combination with gauge observations. The no-rain observations from satellites are applied to a three-
pass Barnes successive-correction scheme (Achtemeier, 1987). As discussed by Weymouth (1999a), 
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the Barnes method is not a statistically optimised technique. Another recent result is from Grimes et 
al. (1999), who used kriging to incorporate satellite data in a gauge-based rainfall estimation, and 
demonstrated some success for estimation at a 10-day time scale.  

The use of satellite infrared imagery for daily rainfall analysis is very important for at least 
two reasons. First, current sparse raingauge networks over central and tropical Australia do not 
provide the basic resolution required to describe the spatial distribution of rainfall. Secondly, rather 
than utilising satellite data for estimating the rainfall amount, satellite data can also be employed to 
estimate the rainfall occurrence; this will help to delineate rainfall areas. 
  
1.3  Aims of the research 

The specific aims of this report are to:  
 
• analyse the spatial variability and correlation of rainfall; 

 

• determine the potential for improved estimation by using combined raingauge and 
satellite data; 

 
• apply the kriging technique for rainfall estimation, particularly for delineation of the 

raining area, and validate various approaches by using climate data; 
 
• identify where further research and development are needed to improve both the theory 

and practice of interpolation. 
 
This work is part of the continuing effort in BMRC to provide better real-time rainfall 

analysis in support of operational weather forecasting.  
 
1.4  Scope of the research 

In this report, a new approach has been developed for the delineation of rainfall. Indicator kriging is 
used to describe rainfall intermittency through a binary variable. This makes it possible for satellite 
observations of rainfall occurrence to be included in the indicator kriging to determine the rainfall 
area (but not the rainfall rate). The results of both raingauge and satellite data indicator kriging are 
effectively combined according to their error variances. The overall rainfall estimation can be 
subsequently determined by kriging the rainfall within the raining areas. 
 
1.5  Structure of the report 

The report is organised as follows. Section 2 discusses the issue of rainfall spatial variability and 
correlation. Section 3 reviews the theoretical aspects of kriging and indicator kriging for rainfall 
estimation. In Section 4 precipitation characteristics, including regional variations, are presented. 
Section 5 discusses satellite rainfall occurrence and the method of combining raingauge and satellite 
rain and no-rain estimates. The selection of a rain / no-rain threshold is also discussed. Section 6 
describes the validation experiment and presents the results. The last section provides a summary and 
conclusion. 
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2. Analysis of rainfall spatial variability and correlation 
 
Before we start using a variety of interpolation techniques for spatial rainfall estimation (such as 
kriging), the behaviour of rainfall spatial variability and correlation over the region needs to be 
addressed. In this section, basic spatial statistical theories that can be applied to rainfall analysis are 
first presented. Then, raingauge data are used for an analysis and the spatial variability of rainfall in 
Australia is discussed. 
 
 
2.1  Measures of rainfall spatial variability and correlation 

For a rainfall observation Z(x) observed at point x, three second-order moments are useful in 
statistical analysis. They are: 
 
(i) The variance of the variable Z(x):          

Var[Z(x)]=E{ [Z(x)-m(x)]2}       …1 

with the first moment and expectation given by:    

m(x)= E[Z(x)]        …2 

(ii) The covariance of a variable Z(x), is given by: 

C(xi ,xj)=E{ [Z(xi)-m(xi)][Z(xj)-m(xj)]}      …3 

where xi and xj are the different spatial points. As the name implies, a covariance is a measure of the 
spatial variation. 
 

The covariance value for a separation distance h=0 is given by:     

C(0)=E{ [Z(x)-m]2} =Var [Z(x)]       …4 

This identifies the ordinary variance of all samples. 

 

(iii) The correlogram is used to describe the spatial correlation relationship at different points. It 
can be expressed as the covariance divided by its respective variances. That is, 

 
)()(

),(
,

ji

ji
ji

xVarxVar

xxC
=)x(x

⋅
ρ       …5 

The covariance and correlogram are basic statistical tools for visualising, modelling, and 
understanding the spatial auto-correlation of a regional variable.  

 
2.2  Sample covariance and correlogram 

The concept of second-order stationarity is needed when analysing the spatial sample covariance. 
The existence of second-order stationarity of a random function requires that the expectation 
E[Z(x)]=m(x) does not depend on x in a local regime (i.e. the expectation is invariant); and the 
covariance depends only on the separation distance h, thus, 
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C(h)=Σ[Z(x)Z(x+h)]-m2  for all x     …6 

The above simplifying assumptions permit calculation of the sample covariance. Detailed 
discussion on these points can be found in some atmosphere objective analysis (e.g. Daley, 1991) 
and geostatistical books (e.g. Deutsch and Journel, 1992). 

 

The covariance function described in Eqn 3 can be written in its sample form separated by h 
to h+∆h, as: 

where n(h) is the number of pairs separated by the distance h, z(x) is the value at the start of the pairs 
which can be called the tail value, and z(x+h) is the value at the end of the pairs which can be called 
the head value. mh and m+h are given by 

Thus, mh and m+h are the mean of the tail and head values. Here, the random variable is 
traditionally denoted by capital letter Z; a random variable can take a variety of specific values 
(denoted by lowercase letter z) at different locations according to some probability (frequency) 
distribution. 

If two variables Z and Y are selected, such as raingauge and satellite data, Eqn 7 can be 
generalised to form the sample cross-covariance Czy(h).  

Alternatively, the sample covariance can be normalised by the respective tail and head 
standard deviations. This gives the rainfall correlogram: 

where σh and σ+h are the standard deviations of the tail and head values. 

If two variables Z and Y are selected, Eqn 10 can be generalised to form the sample cross-
correlogram ρzy(h). ρ(0) identifies the correlation coefficient between two variables at the same 
location.  

 )m)(m(h)+z(x)z(x
n(h)

1
=C(h) h+h

n(h)

1=i

−�      …7 

 z(x)
n(h)
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h �        …8 
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2.3  Covariance modelling 

The analysis of covariance offers a way of characterising the spatial variability of observations. 
Furthermore, fitting of the observed spatial covariance is needed when calculating the kriging or SI 
matrices. For this reason, modelling of the observed covariance is now considered. 

  

Three models are frequently used in geostatistics. These are: 

  

1) Gaussian model, given by 

C(h)=C0[exp(-h2/3a2)]        …13 

where a is a range of covariance and C0 is a constant. 

2) Spherical model, given by 

C(h)=C0 [1-(3h/2a)+(h3/2a3)]      …14 

3) Exponential model, given by 

C(h)=C0 [exp(-h/a)]       …15 

In rainfall analysis, the spherical model is seldom used because its value may increase with 
distance. The question as to whether the Gaussian or exponential model is more appropriate to fit the 
rainfall spatial data will be discussed. The selection of the above modelling functions should also 
ensure existence and uniqueness of solutions to the kriging matrix. The additional requirement to 
meet these conditions is described by Journel and Huijbregts (1978).  

 

2.4  Results of rainfall spatial variability and correlation 

 

In order to reveal the spatial statistical characteristics of rainfall, the covariance and correlation were 
calculated using Eqns 7 and 10 for rainfall for each day in 1998. Pairs of raingauges are included in a 
separation-distance category, where the categories extend from 0 to 500 km in steps of 10 km. Both 
raining points and non-rain points are considered in the calculation (at least one of each pair is non-
zero). Certain distance allowances must be added in the calculation. In order to allow for differences 
between tropical and mid-latitude rainfall systems, separate statistics are calculated north and south 
of 30oS. Figure 1 and Fig. 2 show the averaged covariance C(h) and correlogram �(h), respectively, 
for daily rainfall amounts through 1998. This gives climatological values for rainfall spatial 
variability and correlation. In the figures, the dashed line represents the results from the region north 
of latitude 30�S and the solid line south of 30�S.  

Obviously, rainfall samples located next to each other are more likely to have similar values 
than samples located further apart. A typical covariance tends to decrease with distance h between 
the samples, until it reaches its minimum value. This represents the maximum range where a spatial 
relationship exists within the data. The correlogram equals one at the origin, then decreases with 
distance. 
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Fig. 1: Average 30oS covariance C(h) for daily rainfall amounts (mm) over the 
year of 1998 for the region north (30n) and south (30s) of latitude 30oS. 
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Fig. 2: Average correlogram ρρρρ(h) for daily rainfall amounts over the year of 1998 
for the region north (30n) and south (30s) of latitude 30oS. 

 

The figures show that both the covariance and correlogram fall more sharply near the origin 
and reach zero at about 400 km. The figures also show the different characteristics at mid-latitudes 
and in the tropics (north) of Australia. The correlation in the mid-latitude region falls off more slowly 
than that in the tropical region. This is because a mid-latitude frontal system can produce larger-scale 
rainfall than tropical convective systems. A similar result was also found by Weymouth et al. 
(1999b), who plotted annual rainfall correlations for Australia, for different regions (separated at 
latitude 26oS). He found that the rainfall autocorrelation for northern Australia reached a value of 0.5 
at a distance of about 35 km, compared to about 85 km in the south.  

Figures 3(a) and (b) show the Gaussian and exponential models listed in section 2.3 fitted to 
the averaged covariance using the least-squares method. The fitted range is 500 km. The average 
covariance over four directions for the average of one year of data is given in the figure, which 
shows the fitted functions plotted as a solid line. The data fitting in the figure indicates good 
agreement when using both the Gaussian and exponential models (Eqns 13 and 15). The average 
fitting residual is 4.74 mm for the exponential, and 11.14 mm for the Gaussian model, indicating a 
better fit using the exponential model. 
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Fig. 3(a): Covariance of daily rainfall (mm) fitted by the Gaussian function. 

 
 

 
Fig. 3(b): Covariance of daily rainfall fitted (mm) by the exponential function. 

 
 
 On the issue of which model is considered to produce acceptable approximations of the real 
covariance, Krajewski (1987) and Seo et al. (1990), dealing with cokriging problems, estimated the 
covariance and cross-covariance functions of radar and gauge data using an exponential isotropic 
model. Martinez-Cob (1996) and Hevesi et al. (1992) used the Gaussian model for kriging rainfall 
with elevation dependence. For this study, the exponential model is adopted to fit the rainfall 
covariance, because the Gaussian model was sometimes too sensitive to distance and could yield  
unstable solutions to the kriging equation. 
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2.5  Indicator covariance and correlogram 

Indicator kriging is used to delineate raining areas and will be discussed in detail later in this report. 
One of the important issues is to investigate the spatial indicator covariance and compare it to the 
general covariance in the previous section. Indicator covariance reflects raining or no-rain spatial 
correlation and variance. For calculation of the sample indicator covariance and correlogram, in Eqns 
7 to 12, z is equal to one when it has rain and zero when it has no rain. Because the local indicator 
expectation of z equals the raining probability, the indicator covariance and correlogram measure 
spatial variation and correlation of rain and no-rain probability. Details of the indicator function will 
be discussed in Section 3.3. 

Figures 4 and 5 show the averaged indicator covariance and correlogram for daily rainfall 
through 1998. The plots use the same data set used in Figs 1 and 2. From the figures, clearly, 
indicator covariance and correlogram are range-dependent. When the range equals zero, its variance 
is proportional to the fraction of raining areas (see further in Eqns 24-26 in section 3.3). The figures 
also show the same regional characteristics (i.e. differences between tropical and mid-latitude) of 
ordinary rainfall covariance and correlogram discussed in the previous section. 
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Fig. 4: Average indicator covariance for daily rainfall amounts over the year of 
1998 for the region north (30n) and south (30s) of latitude 30oS. 
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Fig. 5: Average indicator correlogram for daily rainfall amounts over the year of 
1998 for the region north (30n) and south (30s) of latitude 30oS. 
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It is seen that both the covariance and correlation in Figs 4 and 5 do not decrease as sharply with 
distance as do the covariance and correlation of rainfall amount in Figs1 and 2. In other words, the 
rainfall indicator correlation is much higher than the correlation of rainfall itself. This could lead to 
improved rainfall indicator estimates. 
 
 
3. Kriging and indicator kriging algorithms 
3.1  Kriging  

Kriging is a stochastic linear interpolation method that minimises the estimated error variances of a 
localised variable. The derivation of kriging equations has been discussed by many authors (e.g., 
Creutin and Obled, 1982; Journel and Huijbregts, 1978) and used in spatial rainfall estimation in 
recent years. 

For a random function Z(x) (in this case, rainfall at a spatial point), if the joint probability of 
Zi (i=1, n) has a Gaussian (normal) distribution, then its linear estimate or conditional expectation is 
optimal for a kriging estimate. 

We consider a location x0 with an unsampled rainfall z0 and neighbouring rainfall 
observations zi, so that its linear estimator can be expressed as: 

 E*[Z0|z] =E[Z0] +
n

i 1=
Σ Wi(zi-E[Zi] )     …16 

where Wi is the kriging weight and E[Z0]  is the rainfall expectation at z0. n is the gauge number. 
Under the hypothesis of local stationarity of the random function Z, E[Z0] = E[Zi] =m.  
The weights Wi are determined by minimising the unbiased kriging variance E[Z0-E* [Z0|z] ] 2.  
That minimisation results in a set of n linear equations: 

    x,xC=x,xCW jjii

n

1=i

)()(
0

µ+�    j=1,2,…,n     …17 

where C(xi, xj) are spatial covariances at different observational locations, and C(xj, x0) are 
covariances between the observation and an estimated field point. µ is a Lagrange multiplier in 
ordinary kriging that is linked to the “unbiased” condition 

 
n

i 1=
Σ Wi =1        …18 

In Eqn 17, if µ = 0, we have simple kriging, which is equivalent to the statistical 
interpolation (SI) method. SI is not linked to the unbiased condition but requires prior knowledge of 
the background field (the stationary mean m is regarded as a background field in simple kriging).  

One way of estimating E[Z0]  could be to use the local mean of the observed gauges, 

m=
n

1 n

i 1=
Σ Ri  under stationary conditions. It is obviously inappropriate when the gauge number is low 

in local estimated areas. Daley (1991) suggested E[Z0]  could be derived from other sources, such as 
numerical models. Weymouth et al. (1999b) used a Barnes interpolation field as an approximation 
for the background field. For simple kriging, if we do not consider the observational error to be large 
in the estimation process, its matrix can be related to the correlogram, rather than covariance.  

In kriging, because the covariance matrix is positive definite, Eqn 17 will always have a 
solution.  The kriging variance can then be derived as: 

2
kσ =C(0)+  µ− 

n

i 1=
Σ  Wi C(xi, x0)      …19 

This is a measure of the quality of the fit to the kriging equation, rather than a measure of 
local estimation accuracy.  

The kriging provides optimal estimation, relative to other interpolation methods, in the sense 
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that it minimises the least-square error for a covariance model with the unbiased condition. The 
weights Wi depend on the positions of observed and calculated points and the number of 
observations. The kriging covariances C used in this study employ an exponential model to fit the 
actual covariance calculated from spatial rainfall data, as described in section 2.3. 

For regional rainfall estimation, kriging is performed at each estimation point using a 
circular search radius of 250 km. All observations that fall within this radius are included. Increasing 
the search radius will significantly increase the calculation burden and has only a very small impact 
on the estimates. The so-called moving neighbourhood search effectively uses the local stationary 
condition and is an effective way of dealing with the nonstationary problem over a large region.  
 
3.2  Kriging with observation error  

Rainfall data contain observation errors. These errors come from inaccurate measurement of rainfall, 
lack of areal representation, and the imperfect relationship between other observations (such as radar 
and satellite) and the rainfall. Although error bias (systematic error) can be removed through the data 
analysis, usually it is difficult to identify random error inherent in the data. 

It is noted that the two covariances C(xi, xj) and C(xi, x0) in the kriging equation (Eqn 17) 
have different statistical representations. C(xi, xj) is the covariance at different spatial observation 
stations, and it subsequently contains observation error. C(xj, x0) is the covariance between the 
observational and estimation point, where the value at the estimation point should exclude 
observation error.  

A statistical interpolation method described in Daley (1991) gives a minimised variance by 
proposing the concept of background and observation error covariances. The background error 
covariance Cb is the covariance at different locations due to the difference between the mean field 
and true field. This climate or mean field corresponds to the mean or expectation field m used in 
Section 3.1. Observation error covariance Co represents the covariance at different locations due to 
the difference between the observation and true field.  

According to Daley (1991), for rainfall estimation, the following assumptions should be 
considered. First, it is assumed that the background and observation errors are uncorrelated. 
Secondly, if the observation errors are regarded as uncorrelated to each other, and the observations 
are all made with the same type of instrument, the kriging equation can then be written as: 

Compared with kriging Eqn 17, an extra term WiCo is added to reflect the error inherent in 
the observational data.  Equation 20 is equivalent to the statistical interpolation equation by Daley 
(1991) used in atmospheric objective analysis, except for the addition of the Lagrange parameter µ . 
Using the method explored by Daley (1991), the components of Cb and Co can be obtained from the 
kriging covariance (see Appendix 1 for a detailed derivation). In our case, using the data discussed in 
Section 2.4, Co is equal to 20 mm2. 

Considering observation error, the kriging estimator is no longer an exact interpolator; that 
is, the estimated value at an observation point does not equal the observed value, and the kriging 
variance is not zero at that point. 

In this report, we apply the above scheme for raingauge and satellite indicator kriging as well 
as for raingauge rainfall estimation. The kriging estimator in the satellite indicator kriging can be 
used to calibrate satellite rainfall observations. 

 

 )x,x(C=+)x,x(CW+)x,x(CW 0jbiioijibi

n

1=i

µ�    …20 
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3.3  Indicator kriging 

The utility of ordinary kriging for rainfall estimation is limited by particular assumptions. First, 
kriging provides optimal estimation only when the probability distribution is Guassian. However, for 
rainfall processes, rainfall is not normally distributed due to its intermittence (large numbers of zero 
rainfall) and few very high rainfall values. Secondly, the estimated weights and variances are 
independent of the data values. These assumptions may cause kriging to overestimate in the no-rain 
and low rainfall situations, and to underestimate in high rainfall situations. 

The indicator approach is one means of overcoming both of these limitations and, therefore, 
of obtaining better estimates of rain areas. An indicator function is a binary variable representing 
zero and non-zero rainfall amounts. The departure from normality in rainfall should be greatly 
reduced when ‘ rain’  and ‘no-rain’  are separated. A test by Hutchinson (1996) indicated the 
normalising power for non-zero rainfall to be between ½ to 

�
 for Australian rainfall. According to 

Barancourt and Creutin (1992), the transformation to a binary distribution provides a nonlinear 
optimal estimator. Secondly, the problem of data independence of the kriging variance is reduced 
since indicator kriging is conditional on the data values. 

Another compelling reason for using indicator kriging is that the indicator covariance does 
not decrease sharply with distance and it has much greater coherence compared to rainfall covariance 
(discussed in Section 2). Furthermore, satellite observations provide indicator information; i.e. 
rainfall occurrence probability. This will be further discussed in Section 5.1. 

The mathematical formulation of indicator kriging (IK) used in this report is similar to the 
approaches by Barancourt and Creutin (1992). First, it involves transforming the rainfall amount data 
into a set of binary variables. The indicator function I(x) (at location x) with zero cut-off for rainfall 
datum value z(x) may be given as: 

I x
Z

Z
( ) =

= >

= =�
�
�

�� 1 0

0 0
       …21 

Indicator kriging can be expressed in the following kriging equation: 

])[(ˆ][]|[*
1

IEiWIEiIE jj

n

j
j00 −+= �

=

     …22 

where E*[ I0|i]  gives a spatial occurrence probability estimate, � j is the indicator kriging weight and 
E[ I0]  is a spatial occurrence probability expectation. 

With the locally homogeneous condition for kriging, we have E[ I0] =E[ I j] =  jm̂ ; and 

0≤ jm̂ ≤1, then 

)ˆ1(ˆ][*
11
��

==

−+=
n

j
jj

n

j
j0 miWIE      …23 

The IK weight � j can also be found by minimising the IK variance by solving Eqn 17 with 
the specified indicator spatial covariance.  

The characteristics of IK can be described by its probability distribution. We can calculate 
the indicator mean as 

im̂ =E(i(x))=P(Z>0)       …24 

where im̂ represents the cumulative probability of rainfall at x during an event. It also represents the 
rainfall spatial coverage, that is, raining areas.  
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The indicator variance can be easily derived in relation to its mean as:  
2

ισ̂ = im̂ (1- im̂ )        …25 

  It can be seen that, if there is no rain, then im̂ =0, or if there is rain across a whole region 
then im̂ =1, 2

iσ̂ =0. When im̂ =0.5, rainfall occurrence is most uncertain, and 2
iσ̂  reaches its 

maximum value of 0.25.  

With the stationary condition of the mean, the indicator covariance Ĉ (xi, xj) can be 
expressed in the form of the rainfall probability, as 

 Ĉ (xi, xj)=P(Zi>0, Zj>0)- P(Z>0)2       …26 

The estimated value E*[ I0]  solved from indicator kriging is a conditional probability with its 
value lying between zero and one. Therefore, a threshold representing the dividing value needs to be 
selected to separate rain and no-rain estimates. This can be determined by using historical rainfall 
data and will be discussed in Section 5.3. Because indicator kriging, when used to delineate the 
rainfall area, is ultimately related to the rainfall conditional probability, it is more robust and should 
improve the accuracy of the rainfall estimate. 

Overall, after performing indicator kriging, ordinary kriging may be subsequently used to 
determine the rainfall values in raining areas. Double kriging can be expressed as the product of IK 
and kriging, that is,  

  Z*(x)=Ik(x) Fk(x)       …27 

where k is a threshold, and Fk(x) represents the kriging estimate over the raining area. If indicator 
kriging shows no rain (ie. Ik(x)=0), then no further estimation of Fk(x) is needed.  
 
4. Data and test field description 
Australia currently has more than 6000 raingauge stations measuring daily rainfall. Of these, about 
1500 telegraphic stations send daily rainfall observations in real-time. Some of these real-time 
stations only report when there is rain. Thus, for a particular day, only about 1000 raingauges are 
available for real-time access. The remaining observations are from climate raingauge stations, 
whose data cannot be obtained in real-time. They are usually available for analysis a month later.  

Most raingauges are located near the state capital cities and there are vast areas where 
raingauge densities are less than 1 per 10,000 km2. Some desert areas in central Australia have no 
rainfall observations. Figure 6 gives the distribution of these raingauges.  

 

 
Fig. 6: Map of the Australian raingauge observation network. 
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We consider satellite data from the Japanese Geostationary Meteorological Satellite (GMS-
5), with its infrared (IR) channel at 10.5-11.5 µm. Its spatial resolution is 5 km at nadir. The daily 
minimum brightness temperatures in each pixel are averaged onto a 0.25o grid.  

To verify the proposed method, an “observation”  network of about 800 stations has been 
selected from a total of 4300 raingauge stations, representing the actual raingauge numbers used in 
real-time observations. These stations have been used as estimation stations to determine the 
estimated values for a validation network of the remaining 3500 gauge sites. The validation stations 
do not enter into the estimation process and are only used for validating purposes. The choice of 
observed and validation location is determined randomly. 

It is noted that in the real-time data, some of the no-rain reports are unavailable. Therefore, 
the real-time data set we had to use is actually a biased data set. In the validation process, we use the 
unbiased climate data because real-time raingauge numbers are considered too sparse for both 
observation and validation. This may cause some inconsistencies. We compare their estimation 
differences in a later section.   

Two years of daily rainfall data (1997-1998) from raingauge and satellite IR temperature are 
used in this analysis. Initial data quality control is performed by the operational procedures of the 
Australian Bureau of Meteorology. 

The climate systems that affect precipitation in Australia can be crudely classified into two 
types divided at about 30o latitude—tropical convective systems in the north, and mid-latitude frontal 
systems to the south. Most of the rainfall in the northern tropical area occurs in the summer wet 
season, where mainly monsoon and convective activity prevail. Southern Australia comes under the 
influence of rain-bearing cold fronts. Inland areas have less precipitation than those nearer the coast, 
particularly in winter. In summary, the rainfall pattern over Australia is expected to vary seasonally 
and geographically, so separating the rainfall analysis seasonally (four seasons) and geographically 
(at 30oS) should be beneficial.  
 

5. Incorporating satellite observations in indicator kriging 
 
5.1  Satellite rain and no-rain algorithm 

Many methods have been developed for the estimation of rainfall from IR satellite imagery. 
However, these algorithms have significant uncertainties when used for quantitative rainfall 
estimation, mainly due to the incorrect detection of rainfall in cold, non-precipitating cirrus clouds, 
and the failure to detect rain in (relatively) warm stratiform clouds. The other reason is that, for most 
of the time, tropical and continental cloud areas are much larger than raining areas on IR imagery. 
Experience with these satellite algorithms suggests that the basic premise of rainfall being associated 
primarily with cold cloud-top temperatures often does not hold true outside tropical regions. Ebert 
and Le Marshall (1995) have tested three IR algorithms over Australia; all three overestimated the 
rainfall amounts, with Root Mean Square (RMS) errors several times greater than the mean observed 
rain rate. In conclusion, IR rainfall estimates do not appear to be accurate or reliable enough to 
provide quantitative daily rainfall amounts to supplement the gauge observations in Australia.  

Ebert and Weymouth (1999) proposed an alternative threshold method of estimating no-rain 
areas by identifying non-precipitating cloud or the absence of rain-bearing cloud, using the 
difference between the daily minimum IR brightness temperature and the climatological minimum 
surface temperature. Multiple thresholds were adopted by statistics according to the different climate 
and topography. In this report, instead of looking for a threshold that assigns no-rain values, the 
historical GMS IR data, together with the raingauge data, are first used to calculate rainfall 
probability of occurrence. The threshold used to delineate raining and no-rain areas will finally be 
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decided after optimal combination of the raingauge and satellite rainfall through IK estimation.  
In this section, the statistical relationship between satellite temperature and rainfall 

frequency is explored. Similar to Ebert and Weymouth (1999) and Coakley (1988), rather than 
directly using average satellite brightness temperature, we use the temperature difference Td between 
the daily minimum brightness temperature at each pixel and the climatological minimum daily 
surface temperature. These climatological minimum surface temperatures were time- and space-
interpolated from 0.25o gridded monthly average values based on 30 years of observations and 
processed by the National Climate Centre.  

To obtain a statistical relationship between temperature difference and surface rainfall 
occurrence in different seasons, Td has been matched with the frequency of raingauge rainfall Rf. Rf 
can be regarded as a rainfall occurrence probability at different values of Td. It is expected that 
statistical information can be obtained from either low probability-of-occurrence rain (indication of 
no rain) or high probability-of-occurrence rain. Where the frequency equals 0.5, no useful rain or no 
rain information is possible. 

As noted earlier, the cloud systems in northern and southern Australia differ, and so a 
separate statistical analysis is appropriate. Figures 7(a),(b),(c) and (d) show the rainfall frequency Rf 
vs. satellite Td in four seasons for 1998, using the validation raingauge network over the Australia 
region. It is found that the rainfall frequency varies significantly with season and location. Although 
general trends are toward cold temperatures for more rainfall, the relationship between Rf and Td is 
largely dependent on the broad seasonal and regional variations. In mid-latitudes, particularly in 
winter and spring, a Td around –20 to –70°C corresponds to a rainfall frequency of about 50 per cent, 
which is much higher than in tropical areas and at summer mid-latitudes. This is due to the increase 
of warmer stratiform precipitation in frontal systems, and it gives an indication of the difficulty in 
detecting raining areas. In tropical areas, Td could fall to –100°C or lower, with a higher frequency 
particularly in the wet season (November to April the following year), where convective activity 
prevails. In tropical areas, the relationship is close to linear. 

The consistency of these results has been checked against 1997 data, and similar seasonal 
and regional variations were found. 

 
 

 
 

Fig. 7(a): Rainfall frequency as a function of temperature difference between 
daily minimum brightness temperature in each grid box and climatological 
minimum daily surface temperature (December 1997 - February 1998). 
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Fig. 7(b): Rainfall frequency as a function of temperature difference between 
daily minimum brightness temperature in each grid box and climatological 
minimum daily surface temperature (March - May 1998). 

 

 
 

Fig. 7(c): Rainfall frequency as a function of temperature difference between 
daily minimum brightness temperature in each grid box and climatological 
minimum daily surface temperature (June - August 1998). 
 

 

 
 

Fig. 7(d): Rainfall frequency as a function of temperature difference between 
daily minimum brightness temperature in each grid box and climatological 
minimum daily surface temperature (September - November 1998). 
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5.2  Merging satellite and raingauge indicator estimates 

Having obtained both raingauge and satellite indicator kriging estimates, the next step is to combine 
the two indicator estimates with a weighting function, based on their spatial and error parameters.  

In the merging of two spatial observational data sets, cokriging is considered to be capable of 
handling a multi-variable situation by considering both the auto-correlation of each variable and the 
cross-correlation among them. Some studies of using cokriging for spatial rainfall estimation can be 
found in Krajewski (1987) and Sun (1998). However, cokriging is computationally expensive for 
rainfall estimation at regional scales when a neighbourhood search scheme is applied. 

A much simpler approach is used here. Conceptually similar to cokriging, Rodgers (1976), 
in studying the combination of satellite thermal radiation with surface temperature, used a linear 
optimal minimising estimate. After assuming that the error variances represent independent 
measurement devices, he derived a way of combining two independent measurements by taking a 
weighted average related to their error variances. For our applications, if the two independent 
measurements are raingauge and satellite rainfall indicators, the combined estimates can be 
expressed as: 
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where I i denotes the combined indicator estimates, I ig is the rainfall estimate from gauge indicator 
kriging and I is is the rainfall estimate from satellite indicator kriging over a location,  σig

2 is the 
gauge indicator error variance and σis

2  is the satellite indicator error variance. 
The combined error variance is 
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It can easily be proved that σi
2 is smaller than either σig

2 or σis
2. Therefore, if the different 

observations are independent (in our case: raingauge and satellite), an appropriate combined estimate 
(i.e. Eqns 28-29) should reduce uncertainty even if one of the observations is less reliable; for 
example, an observation from a satellite.  

It is noted that, rather than using the kriging variance, the error variance is used. This is 
because the kriging indicator variance only provides a measure of kriging indicator correlation and 
configuration itself, and is not directly related to the rainfall observations. Therefore, it is not a 
measure of data validation performance. The error variance is derived from its IK estimation and 
gauge validation data. It is the mathematical combination of the kriging variance and the observation 
error variances. On the other hand, satellite error variance arises mainly from the observations rather 
than the kriging method itself. 

Finally, it is obvious that the number of raingauges used in the estimation has an impact on 
the accuracy of the kriging estimates. As a result, the error variance estimated from gauges has been 
related to the number of gauges used in each neighbourhood search process. 

Both the error variance and kriging variance have been studied as functions of the number of 
raingauges. This has been shown that both variances decrease as raingauge numbers are increased. In 
general, the magnitude of error variance is smaller than that of the kriging variance.  

Regression of the raingauge error variance against the number of raingauges Ng (see Fig. 8) 
is found to give:  

            σ2
ig = -0.0015Ng+0.157      …30 
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Fig. 8: Fitted relationship of error variance with raingauge number. 
 

Satellite data are specified on a regular grid, and so the same number of grids is used in local 
estimation. Its average kriging error variance is constant. We allow for a geographical difference 
between the south and north of the Australian region. Then, we find 

σ is x2
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   …31 

The differences between satellite and raingauge variances give an indication that, in the case 
of a sparse gauge network area, satellite data have a greater weight. Thus the uncertainty in a sparse 
gauge network can be reduced. 
 
5.3  Selection of rain and no-rain threshold 

As the combined estimated rainfall from Section 5.2 represents rainfall occurrence probability, an 
appropriate threshold needs to be determined. This cut-off value (k in Eqn 27) is used to finally 
separate the raining and no-rain areas. Currently, there is no theoretical approach for the selection of 
the threshold. In this report, the unbiased threshold is determined by validation, using the actual 
rainfall estimation data set.  

One way of achieving this objective is to use a contingency table and its verification 
parameters (Stanski et al., 1989). This approach is often used in the verification of binary variables. 
For the rainfall indicator validation, the category can be divided into four numbers: N1 to N4, 
representing different outcomes in a contingency table, as shown in Table 1. 

 
Table 1: Rain and no rain contingency table. 

 Observed no rain Observed rain 

Estimated no rain N1 N2 

Estimated rain N3 N4 
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In Table 1, N1 and N4 represent correctly estimated numbers and N2 and N3 represent 

incorrectly estimated numbers for observed (validated) no rain and rain results respectively. From 
Table 1, a goodness score S can be defined as the number of correctly estimated minus the number of 
incorrectly estimated over the total number of points: 

  
N4N3N2N1

N3N2N4N1
S

+++

−−+
=        …32 

where S varies from -1 to1. Higher scores indicate more correct estimates.  
 
Subsequently, biases B1 and B2 can be defined as the number of estimated divided by the 

number of observed events for no rain and rain categories. 

  
N3N1

N2N1
B1 +

+
=        …33. 

N4N2

N4N3
B2 +

+
=        …34 

Obviously, when the bias equals one, there is no bias at all. When the bias is smaller than 1, 
the rain or no rain areas are underestimated, while values of bias greater than 1 imply overestimation.  

In the process of selecting the optimised threshold, for each threshold value between 0 to 1, 
a contingency table and associated parameters have been calculated separately to test the 
performance of indicator kriging estimates. Values are calculated at about 3800 validating raingauge 
locations over the whole region. 

Figures 9(a) and (b) show the goodness score S as a function of threshold for different 
specific situations. Two rainfall events are investigated, with one weak rainfall case (1-2 Jan 1998 
when average rainfall was about 1.5 mm over the region) and one widespread rainfall case (11-12 
Jan 1998 when the average rainfall was about 5 mm). With a total of about 8700 validation points 
calculated in Eqn 32 (sum of N1 to N4), the number of correct estimates (N1 and N4) increases with 
threshold. Meanwhile, the number of incorrect estimates (N2 and N3) also starts to increase at the 
high threshold. S will reach a maximum value when the threshold is around 0.5 in both cases. 

Figures 10(a) and (b) give the variations of B1 and B2 values at different thresholds for the 
same cases. From the figures, it appears that when the threshold is around 0.4, both B1 and B2 are 
approximately equal to one. This indicates the least biased values of B1 and B2 are obtained at this 
point. The unbiased threshold derived from B1 and B2 is 0.4 instead of 0.5 because the data set tends 
to be biased towards no rain cases.  

Finally, Figs 9(c) and 10(c) give the goodness score and bias values over two-week data. 
They are consistent with the results shown in previous figures. The other tests also show that the best 
thresholds derived from the goodness score and bias value were not sensitive to the regional and 
seasonal variations, although the shapes in the figures of score and bias might change.  

In conclusion, if the threshold is too small then we will wrongly identify some of the no-rain 
areas as raining areas, particularly in weak rainfall cases. If the threshold is too high we will wrongly 
identify some rain areas as no-rain areas, particularly in widespread rainfall cases. A balance can be 
reached when the optimal threshold is selected. From the results considered here, a threshold of 0.45 
is chosen for our rainfall analysis.  
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Fig. 9(a): Goodness score S at different thresholds (1-2 January 1998). 
 
 

 
 

Fig. 9(b): Goodness score S at different thresholds (11-12 January 1998). 
 
 

 
 

Fig. 9(c): Goodness score S at different thresholds (two weeks data, January 1998). 
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Fig. 10(a): Variations of B1 and B2 Bias values at different thresholds  
(1-2 January 1998). 
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Fig. 10(b): Variations of B1 and B2 Bias values at different thresholds  
(11-12 January 1998). 
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Fig. 10(c): Variations of B1 and B2 Bias values at different thresholds  
(two weeks data, January 1998). 
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6. Estimation results and validation 
6.1  Case study 

First, a typical case of daily rainfall estimation is presented; this gives a general overview of how 
these methods perform. Figures 11 (a)–(d) give a series of plots of daily rainfall estimates by using 
different methods for 25 November 1998. They are gauge kriging rainfall estimation without 
indicator (GK), satellite rainfall occurrence probability (SP), gauge and satellite rainfall area 
delineation using indicator kriging (GSIK) and gauge and satellite rainfall estimation using double 
kriging (GSDK). The radius of the search domain is 250 km for all the methods. In Fig. 11(a), black 
areas indicate no-gauge areas. For comparison, Fig. 11(e) shows all station locations of rainfall 
validation data (5190 raingauges from climate stations) on the same day, with symbol ‘+’ 
representing sites that recorded precipitation and dots representing no precipitation. Real-time data 
for 1075 raingauges are used as the observational network. The estimation is carried out on a 0.25o 
grid. In this event, due to a tropical low pressure and a subtropical front system, the rainfall was 
strongly convective. The measured 24-hour maximum accumulated rainfall was 109 mm for the 
raingauges (rainfall mean over the continent is 5.5 mm; standard deviation 12.2 mm). 

Figure 11(a) shows the results of rainfall estimation performed by kriging without using IK. 
Compared to Fig. 11(e), it seems that the raining area derived from kriging is overestimated, mainly 
through falsely producing raining areas at several locations. The delineated rainfall area derived from 
GSIK (Fig. 11(c)) seems more realistic and is well fitted to the validation results (see Fig. 11(e)). 
The delineated rainfall area in Fig. 11(c) is also consistent with the occurrence probability of satellite 
rainfall estimation SP (Fig. 11(b)). This is important for the no-gauge data area, where the satellite 
may capture the rainfall area. For example, the rainfall area located around 24°S 126°E was 
identified by satellite data (see Fig. 11(b) and (c)), where no raingauges exist (we cannot estimate the 
rainfall amount). We plotted these areas as black in Fig. 11(d) to indicate a raining area. 

The figures show that double kriging (GSDK – Fig. 11(d)) not only effectively combines 
gauge and satellite data and correctly reflects the rain and no-rain variations, but also provides 
optimal rainfall estimates in comparison with simple kriging methods (Fig. 11(a)). Also, the raining 
area is identified in the no-raingauge area. 

 
6.2  Overall validation 

To compare the overall performance of rainfall estimation techniques based on various kriging 
techniques, validation is carried out using Mean Absolute Error (MAE) and Root Mean Square 
(RMS) as indicators of performance. The functions MAE and RMS are calculated by comparing 
estimated rainfall with observed rainfall from validation gauge stations (average of about 3500), and 
we investigate the average error value over all validation gauge locations for each day and over the 
two-year period (1997-1998). The indicator function and rainfall estimates are calculated from 
observational raingauges, which are independent of the validation raingauges (see Section 4). We 
first look at the performance of indicator kriging using gauge indicator, satellite indicator and 
satellite with gauge indicator functions. Then we validate the overall performance of using kriging 
and double kriging on rainfall estimation.  
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Fig. 11(a): Daily rainfall 
estimates using the kriging 
method (without indicator 
kriging) on 25 Nov. 1998. 
 

 
 

Fig. 11(c): Daily rainfall area using the 
indicator kriging method on 25 Nov 1998. 

 

 
Fig. 11(b): Daily rainfall 
probability from satellite data 
on 25 Nov 1998. 

 
 
 

 
Fig. 11(d): Daily rainfall 
estimates using the double 
kriging method incorporating 
satellite data on 25 Nov 1998. 

 
To check the effectiveness of using satellite data as an indicator, we validated the estimation 

of rain area over a sparse raingauge region in tropical and central Australia (14-32°S, 120-138°E). 
First, for rainfall area delineation, indicator estimates are calculated using gauge data only (GIK) and 
gauge data together with satellite data (GSIK). The MAE errors of GIK and GSIK are calculated for 
each day; in total about 670 days. The MAE error difference (i.e., GSIK-GIK) is calculated and 
plotted in Fig. 12 (negative values give indication of improvement by including satellite data). The 
horizontal coordinate gives the mean of the indicator function from validation raingauges, 
representing the percentage of raining gauges over total raingauges in the whole area, and its value 
varies from no rain (0) to the maximum raining percentage of about 62 per cent. The results show 
that the number of days that satellite data have improved the estimates is three times higher than the  
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Fig. 11(e): Daily rainfall observations from validation raingauges on 25 
November 1998  
 

number of days that have worsened them. The improvement using the GSIK method is particularly 
significant in a widespread rainfall situation. This is because the sparse raingauge network is unable 
to detect rainfall in some locations. At the same time, satellite data can detect rainfall in those 
locations where satellite occurrence probability is high. Figure 12 also shows that even in a weak 
rainfall situation, the absolute error difference is small and that satellite data can still improve the 
estimation by detecting areas of no rain.  
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Fig. 12: Plot of MAE error differences (GSIK-GIK) on different days with different 
rainfall percentages. 

 
Table 2 gives the average values of RMS and MAE for different indicator krigings in the 

above central and tropical gauge sparse area. They are averaged over the two-year period. Mean and 
standard deviation of both validated (marked as V-data Mean, V-data Std) and estimated rainfall 
(marked as Kriging Mean, Kriging Std). They are expressed in indicator value. Here, “no indicator 
kriging”  means normal kriging (GK) is applied (where estimates greater than zero are regarded as 
raining areas). 
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The use of indicator kriging (both GIK and GSIK) proved to be significantly better than 
kriging without an indicator (GK) when estimating the raining area, because IK optimises the rain 
area estimates. Thus, optimal estimators are provided by improving the estimation of the non-
Gaussian distribution of rainfall. 
 

Table 2: Indicator kriging validation results for averaged daily rainfall area  
in central and tropical gauge sparse area. 

 V-data 
Mean 

V-data 
Std 

Kriging 
Mean 

Kriging 
Std 

RMS MAE 

No indicator kriging (GK) 0.16 0.31 0.25 0.37 0.37 0.16 
 

Gauge indicator kriging 
(GIK) 

0.16 0.31 0.10 0.24 0.34 0.14 
 

Satellite indicator kriging 
(SIK) 

0.16 0.31 0.12 0.23 0.33 0.14 
 

Gauge + sat indicator 
kriging (GSIK) 

0.16 0.31 0.12 0.25 0.32 0.12 

 
Similar results can be found in Table 3, where the validation over the whole Australia region 

is considered for these four methods. However, the differences between Table 2 and Table 3 are seen 
in the success of the satellite indicator, SIK, relative to the gauge-based indicator. The SIK performs 
better in the tropical area than it does over the whole Australian region. The satellite data itself is 
expected to work better in the tropical area because of its good temperature-raining relationship 
compared to the case for mid-latitudes. The better performance of the satellite indicator also comes 
from its high spatial resolution. Secondly, only small numbers of raingauges are located in the 
tropics. In contrast, over the south-east Australian region, the total number of raingauges is very high 
compared to the tropics (and could be as much as 10 times higher). Therefore, the weighting of the 
indicator in GSIK takes much greater account of the gauge indicator.  
 

Table 3: Indicator kriging validation results for averaged daily rainfall area  
over the Australian region. 

 V-data 
Mean 

V-data 
Std 

Kriging 
Mean 

Kriging 
Std 

RMS MAE 

No indicator kriging 
(GK) 

0.25 0.41 0.45 0.47 0.50 0.25 
 

Gauge indicator kriging 
(GIK) 

0.25 0.41 0.24 0.40 0.37 0.14 
 

Satellite indicator 
kriging (SIK) 

0.25 0.41 0.11 0.21 0.46 0.21 
 

Gauge + sat indicator 
kriging (GSIK) 

0.25 0.41 0.24 0.40 0.36 0.13 

 
Due to sample statistics, the validation gauge locations tend to be in regions where the 

overall gauge density is relatively high. Rainfall analysis is usually performed on a regular grid, and 
the gauge density is often sparse around many of the grid points. A test is therefore performed to 
study the impact of gauge density on the estimated rainfall area by gradually reducing the observed 
raingauge numbers. Figure 13 shows the MAE for the three methods of IK estimates as a function of 
raingauge number. These are average results over the two-year data set using 4000 validation 



 27 
 

 

  

raingauges. The MAE for the satellite estimate SIK is only determined by the validation locations 
and is therefore constant. The figure shows that estimates from GSIK are always better than for a 
gauge-only method GIK, until no observational gauge exists. In that situation, the GSIK tends to the 
satellite estimate and GIK tends to the value where all the estimated values are zero.   

Figure 13 shows that, although on average the satellite rain area estimation is relatively poor 
compared to the dense gauge network, it can improve the estimate in areas where there are no, or few 
gauges. Without satellite data, zero rainfall is assumed in regions where there are no gauges.   
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Fig. 13: MAE errors for three methods of indicator kriging estimates with 
different raingauge numbers. 

 
To verify the impact of raining coverage on the performance of indicator kriging, a test is 

also performed for indicator kriging by separating the validation raining area into three rainfall area 
categories: rain area greater than 50 per cent, less than 20 per cent and between 20 and 50 per cent. 
The results seem consistent regarding the performance of different methods in the report. For 
obvious reasons, the satellite is more effective if the rain area is >50 per cent. 

For rainfall estimation over the identified raining areas, the overall performance of double 
kriging is calculated and differences from other methods are shown in Table 4. Measured by RMSE 
and MAE, the gauge and satellite kriging (GSDK) performs best. However, double kriging may 
produce a mean bias of about 5 percent because most of the optimal estimation methods tend to 
underestimate the results (smoothing effect); the bias may also come from the indicator kriging 
where it may remove some gauge observations. Secondly, Table 4 shows that the improvement from 
GSDK is also marginal compared to GDK. Further tests show that GSDK has a somewhat greater 
impact as the number of gauges is reduced. One reason for the small impact of satellite data on actual 
rainfall estimates is that satellite data can only provide raining information in the indicator estimation 
process, but they are not used to estimate the rainfall amounts. Therefore, for the second kriging only 
the gauge data are involved in the raining area. In conclusion, indicator kriging does not have a great 
impact on rainfall amount estimations. 

Further tests have also been performed by separating validations of the raining area into 
weak (rainfall less than 1 mm), medium (between 1 and 5 mm) and heavy rain (greater than 5 mm) 
categories for double kriging. Again, performance of the different methods seems consistent, except 
for the differences in their absolute values. 
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Table 4: Double kriging validation results for daily rainfall (mm) 

over the Australian region. 

 V-data 
Mean 

V-data 
Std 

Kriging 
Mean 

Kriging 
Std 

RMS MAE 

Single no indicator 
kriging (GK) 

2.04 6.47 2.03 5.17 4.59 1.42 

Double gauge (GDK) 2.04 6.47 1.92 5.16 4.59 1.37 
Double g+s (GSDK) 2.04 6.47 1.92 5.15 4.57 1.35 

 
Finally, it is worthwhile to test the sensitivity of the number of raingauges to the kriging 

estimates and the impact of using the real-time daily rainfall database. First, a test is conducted to 
assess the impacts of different observation sets and validation sets by doubling the number of 
observation stations (around 1600 raingauges). 

Table 5 is calculated using the increased number of observing stations. Compared to Table 
4, the same conclusions regarding the performance of different methods remain valid. RMS and 
MAE errors in Table 5 are reduced due to the increase in the number of raingauges. V-data mean 
and V-data Std have changed little, indicating stable statistics. However, there is some increase in 
bias in the kriging mean. 
 

Table 5: Double kriging validation results for daily rainfall (mm) over the  
Australian region using around 1600 gauges. 

 V-data 
Mean 

V-data 
Std 

Kriging 
Mean 

Kriging 
Std 

RMS MAE 

Single no indicator 
kriging (GK) 

2.03 6.46 1.91 5.17 4.52 1.37 

DB gauge (GDK) 2.03 6.46 1.81 5.17 4.54 1.32 
DB g+s (GSDK) 2.03 6.46 1.81 5.15 4.52 1.31 

 
In the same manner, for indicator kriging, Table 6 is calculated from the increased number 

of stations. Compared to Table 3, again, nearly the same results can be found. Because the satellite 
data remains the same, the result is even more stable compared to Tables 1 and 4. 
 

Table 6: Indicator kriging validation results for averaged daily rainfall area  
over the Australian region using around 1600 gauges. 

 V-data 
Mean 

V-data Std Kriging 
Mean 

Kriging 
Std 

RMS MAE 

No indicator kriging 
(GK) 

0.25 0.41 0.47 0.48 0.52 0.28 
 

Gauge indicator 
kriging (GIK) 

0.25 0.41 0.25 0.41 0.37 0.14 
 

Satellite indicator 
kriging (SIK) 

0.25 0.41 0.11 0.21 0.46 0.21 
 

Gauge + sat 
indicator kriging 
(GSIK) 

0.25 0.41 0.26 0.41 0.36 0.14 
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Until now, we have used the climate raingauge network for model verification. As our 
purpose is to establish a real-time rainfall analysis system, we therefore need to test the use of real-
time data for observations while using climate data for validation. The following calculation is 
conducted for a three-month data period. Table 7 shows the validation results calculated from the 
climate stations and Table 8 is calculated from real-time observations. In general, the same 
conclusion regarding the performance of different methods remains valid, biases and errors 
decreased when using real-time data. This is because the real-time observations are biased towards 
higher rainfall.  
 

Table 7: Double kriging validation results for daily rainfall (mm)  
over the Australian region using climate raingauges. 

 V-data 
Mean 

V-data Std Kriging 
Mean 

Kriging 
Std 

RMS MAE 

Single no indicator 
kriging (GK) 

2.42 8.01 2.42 6.20 6.09 1.94 

DB gauge (GDK) 2.42 8.01 2.22 6.20 6.11 1.84 
DB g+s (GSDK) 2.42 8.01 2.24 6.19 6.08 1.83 

 
 

Table 8: Double kriging validation results for daily rainfall (mm)  
over the Australian region using real-time raingauges. 

 V-data 
Mean 

V-data Std Kriging 
Mean 

Kriging 
Std 

RMS MAE 

Single no indicator 
kriging (GK) 

2.42 8.01 2.49 6.55 5.58 1.79 

DB gauge (GDK) 2.42 8.01 2.40 6.56 5.57 1.76 
DB g+s (GSDK) 2.42 8.01 2.41 6.56 5.57 1.73 

 
6.3  Comparison with SI and Barnes rainfall estimations 

Since Barnes rainfall estimation is currently being used in operational analysis and statistical 
interpolation (SI) (developed by Weymouth et al. (1999b)) for Australian rainfall analysis, it is useful 
to compare the performances of the SI, Barnes and kriging techniques. As stated earlier (Section 1.2 
and 3.1), the Barnes technique is a successive-correction interpolation scheme (Achtemeier, 1987) 
using the weighting functions. Weymouth et al. (1999a) used a three-pass Barnes analysis to estimate 
the daily rainfall over the Australian continent. The SI technique is structurally similar to kriging 
except that it requires a background field as a first guess (some references also call it simple kriging). 
 That is, in Eqn 16, the rainfall expectation E[Z0] is replaced by a background field, and without the 
“unbiased” condition of Eqn 18. Therefore, the SI linear estimator can be written as (Daley, 1991): 

 fai=fbi+
nj ,1=

Σ Wj (foj – fbj)       …35 

where fai is the estimated rainfall and fbi is the background rainfall at the estimation points and foj is 
the observed rainfall at the different observation locations. 

To estimate error variance, by defining the true rainfall T and applying T in both sides of 
Eqn 35, the weights Wj can be determined using statistical least squares estimation by minimising 
the unbiased error variance E[fai- Ti]

2, as described in section 3.1 and by authors such as Daley 
(1991) and Weymouth et al.(1999b). That minimisation results in a set of N linear equations 



 30 
 

 

  

expressed by a weight matrix. 
Therefore, the solution of Eqn 35 (a detailed derivation can be seen in Daley, 1991) gives 

the following least-square optimal estimates expressed in matrix form as 

 Wj=Bj
T[B+O]-1          …36 

where B are the [j×j] background and observational error covariance matrices. Bj
T is a covariance 

vector from the observation points to an estimated point. The superscript –1 indicates an inverse 
matrix and matrix O is observational error covariance.  

The SI method we used here is from Weymouth et al.(1999b). The steps required for SI 
analysis are listed as follows: 

(1) Determine suitable background fields. A problem may occur here because we do not 
have suitable background fields. Weymouth et al. (1999b) use three-pass Barnes estimates as a 
background field. 

(2) Determine and fit the background field function. The function chosen in SI is: 

 C=(1+r/L) exp(-r/L)       …37 

(3) Determine observational and background error variances. 
(4) Check data normality and SI parameter selection etc.  

 
For our study, the same validation data sets were used as in the previous validation. Table 9 lists 
comparison results for SI, three-pass Barnes and kriging. The RMS and MAE from kriging are 
smaller than the results from the SI and Barnes techniques, with less mean bias. The better results 
from kriging may be because the first guess field is better determined in kriging than in the SI 
technique. Moreover, double kriging further reduces the estimated error compared to SI and Barnes, 
due to the influence of indicator kriging. 
 

Table 9: SI and kriging validation results for daily rainfall (mm)  
over the Australian region. 

 V-data 
Mean 

V-data Std Analysis 
Mean 

Analysis 
Std 

RMS MAE 

Kriging (GK) 2.04 6.47 2.03 5.17 4.59 1.42 
Barnes 2.04 6.47 1.88 4.91 4.80 1.45 
SI 2.04 6.47 1.70 4.80 4.75 1.43 
Double Kriging 
(GSDK) 

2.04 6.47 1.92 5.15 4.57 1.35 

 
 

It should be noted that conclusions drawn from comparisons of the SI, Barnes and kriging 
are only valid for our case studies. Although most of the parameters in these methods are selected to 
be identical, there are still parameters that are dependent on their own formulation and assumption. 
For instance, the characteristics of the SI analysis can rely on the guess field used, and on precise 
formulation of the spatial correlation functions. Therefore, the superiority of kriging over SI and 
Barnes is relevant only to the particular circumstances of the report; it should not be interpreted as a 
more general conclusion. 
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7. Summary and conclusions  
 
In this study, a method is presented for producing spatial daily rainfall analyses over the Australian 
region. The kriging method is used to implement spatial interpolation with a moving search 
technique over the region. The approach described here allows more effective use of satellite-based 
and raingauge-based observations for precipitation estimates. A particular interest is exploring the 
capability of delineation of the raining area. Indicator kriging provides a way of spatial interpolation 
in a probability sense. It is theoretically better than ordinary kriging for the purpose of delineating the 
raining area. For the satellite-based detection of the raining area, a statistical relationship between IR 
temperature and rainfall occurrence is derived. Kriging is also used to calibrate the satellite data to 
remove the observational bias. The optimised combination of rainfall indicator information derived 
from both raingauge and satellite indicator kriging gives a rainfall occurrence probability. Weights 
are derived from the error variances determined from a validation data set, then used to combine the 
gauge and satellite data occurrence probabilities, a concise and practical way of avoiding the 
complexity of cokriging. Using the contingency table, an unbiased threshold is determined by 
maximising the number of correct estimates and minimising the number of incorrect ones. After 
selecting an appropriate threshold, the raining area can be decided. The amount of rainfall can then 
be determined in the raining area by kriging of data from raingauges.  

Indicator kriging gives better estimates than traditional kriging without indicator estimates 
for the delineation of the rain and no-rain areas. Use of satellite data in the indicator kriging 
improves the rain delineation, particularly in tropical areas where the raingauge network is sparse. 
For rainfall estimation over raining areas, although kriging improves estimates over the SI and 
Barnes techniques, the improvement of double kriging is marginal compared to simple kriging after 
using indicator kriging. This is so because, although indicator kriging can give an indication of 
raining areas, it is not used to estimate the rainfall amount. 

Further work may involve the improvement of rainfall estimation in raining areas. Prospects 
for this will be further enhanced when satellite microwave sensors are considered. Experiments by 
Ebert and Manton (1998) indicated that rainfall rates estimated from the Special Sensor 
Microwave/Imager (SSM/I) had a better correlation with radar rainfall than other satellite remote 
sensing methods, particularly over the ocean, where raingauge data are not available. The use of 
SSM/I and IR satellite data could potentially improve both the rain and no-rain estimates and the 
rainfall amount in raining areas.  
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Appendix 1 
 
1. Derivation of kriging equation with observational equations (derivation of Eqn 20). 
 
From kriging Eqn 16, we have 

   x,xC=x,xCW jjii

n

1=i

)()(
0

µ+�      …A.1 

As stated in the report, C(xi, xj) is the covariance at different spatial observation stations, and it 
contains observation error. C(xj, x0) is the covariance between the observational and estimation 
point, where at the estimation point the estimation should exclude from observation error.  

C(xi, xj)=E[(Zi- E[Zi])([Zj- E[Zj])]     …A.2 
 
A.2 can be further expressed as 
C(xi, xj)=E[(Zi- E[Zi]+ Ti-Ti)([Zj- E[Zj] + Tj-Tj)] 
      = E{[(Zi-Ti)–(E[Zi]- Ti)][(Zj-Tj)– (E[Zj] -Tj)]} 
      =E[(Zi-Ti)(Zj-Tj)]-E[(Zi-Ti)(E[Zj] -Tj)]- E[(E[Zi] –Ti)(Zj-Tj)]+E[(E[Zi] –Ti) (E[Zj] -Tj)]  
           …A.3 
where in (A.3) E[(Zi-Ti)(Zj-Tj)] can be called observation error covariance;  
E[(E[Zi] –Ti)(E[Zj] -Tj)] can be called background error covariance; while E[(Zi-Ti)(E[Zj] -Tj)] is the 
covariance between background error and observed error. 
For the covariance between background error and observed error, one would expect it is uncorrelated 
for the reason that the rainfall bias has already been removed and only the random error exists 
(Daley, 1991), i.e.:  

E[(Zi-Ti)(E[Zj] -Tj)]=0       …A.4 
E[(E[Zi] –Ti)(Zj-Tj)]=0       …A.5 

 
If the observation errors are regarded as uncorrelated to each other and only related to themselves 
and are all made with the same type of instrumental observation; i.e., covariance of observed error at 
different points equals zero, and the covariance of the observed error at the same point equals one. 
Then: 

E[(Zi-Ti)(Zj-Tj)]= Co       …A.6 
Finally; 

C(xi, xj)= Cb + Co       …A.7 
 
On the right-hand term, similar to the above, we have 
C(xj, x0)= E[(E[Zi] - Zj)([E[Zo]-T0)] 
       =E[(E[Zi]–Tj - Zj + Tj) (E[Z0]-T0)] 
       =E[(Zi-Ti) (E[Z0]-T0)]+E[(E[Zi]- Tj) (E[Z0]-T0)] 
       = E[(E[Zi]- Tj) (E[Z0]-T0)] 
       = Cb          …A.8 
 
2. Derivation of Cb and Co from C. 
 
In Eqn 20, we need to obtain Cb and Co from C. 
First, assume C=C0

2
 F(r), Co =E0

2
 F(r), Cb =Eb

2
 F(r). F(r) is a correlogram model and is described in 

Section 2 (Eqns 13-15). 
From A.3, when the separation distance equals zero, we have 
        …A.9 
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From the correlogram, when the separating distance tends to zero, we have (Daley, 1991)  
 

     …A.10 
 
 
ρ can be found by measuring the proportions at the zero distance from the calculated covariance and 
the covariance extrapolation from the small distances.  
 
Therefore 

Eb
2=ρC0

2          …A.11 
Eo

2=C0
2 (1-ρ)        …A.12 

 
For more discussion on this topic, refer to Daley (1991). 
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Appendix 2 
 
Flowchart of Kriging Programming 
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