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In this study we assess landslide susceptibility of Havran river basin using Geographical 
Information Systems (GIS), Remote Sensing (RS) data and the statistical index method. 
Landslide locations were interpreted from topographic maps and verified with field 
observations. The collected data was combined in a spatial database using GIS and RS. 
Lineament, NDVI and Land use/cover data of the basin were extracted from Landsat ETM+ 
and Spot XS satellite images. Other contributing factors of elevation, slope, aspect, curvature, 
lithology, distance to roads, rainfall and soil data of the basin were also included. A GIS-
based assessment process was constructed using these eleven factors and a statistical index 
method was used to produce a map of susceptibility. The results of the analysis were verified 
using the original landslide location data. The comparison between the predicted result and 
the actual distribution of landslides showed a high consistency.  
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1. Introduction 
In more than 10 years different methods and techniques for evaluating landslide occurrence 
have been developed and proposed worldwide (Hansen, 1984; Varnes, 1984; Hutchinson, 
1995; Crozier, 1995). These methods include inventory mapping (direct approach) and a set of 
indirect, quantitative methods, namely the knowledge-based (index), statistical (data-driven) 
and deterministic approaches (Carrara et al., 1998). Quantitative methods rely on observed 
relationships between controlling factors and landslides (Guzzetti et al. 1999). Statistical 
analysis in quantitative methods are used to obtain predictions of the mass-movement from a 
number of parameter maps (Yin and Yan, 1988; Gupta and Joshi, 1990; Lee et al., 2002; 
Ayalew et al., 2004; Carrara et al., 1991; Chung and Fabbri, 1999). They can be categorized 
into two subgroups according to their data analysis methods: bivariate and multivariate 
(Soeters and van Westen, 1996). The bivariate models consider each individual thematic map 
in terms of landslide distribution and can be easily implemented in GIS (van Westen 1997). 
Mapping past and recent slope movements, together with the identification and mapping of 
the conditioning or preparatory factors of slope instability, are key components for predicting 
future landslides (Carrara et al., 1998). Generally, the purpose of landslide susceptibility 
mapping is to highlight the regional distribution of potentially unstable slopes based on a 
detailed study of the contributing factors (Ayalew et al., 2004).  
 
Since susceptibility mapping involves the handling and interpreting of a large amount of data, 
the use of GIS is very important. One advantage of assessing landslide susceptibility using 
GIS is the speed at which calculation can be performed. Additionally, complex techniques 
requiring a large number of map crossings and table calculations are feasible. Furthermore, 
RS has an important role in assessing the susceptibility of landslides. Mantovani et al. (1996) 
review the use of RS techniques for landslide studies and hazard zonation in Europe. This 
study reveals that remote sensing data are mostly used in preparation of some predisposing 



factors for the assessment. So far, RS data have played a minor role in landslide investigations 
because of their limited resolution and the small size of landslide. Using topographical maps 
and field surveys, 84 landslides were determined in the study area. In order to assess the 
susceptibility in the area we used the statistical index method (van Westen, 1997) to 
qualitatively define the weight values. However, many different methods exist for the 
calculation of weight values.  
 
2. Study Area 
The Havran river basin is situated between the coordinates 494530 – 530806 Y and 4365088 - 
4395802 X coordinate (UTM, ED 50, Zone 35 N) in the western part of the Balikesir district, 
western Turkey. With a perimeter of 138.8 km and covering an area of about 570 km2 (Fig. 1), 
the elevation of the basin changes between 0-1290 m. The Havran River flows in a west to 
east direction through the basin.  
 
Geologically, the study area consists of four main types of lithological units: metamorphic 
basement rocks of Paleozoic-Mesozoic (schists, metagrabbros, amphibolities, phyllites, 
recrystallized limestone; granitic plutons of Upper Oligosen-Lower Miocene; Ayvacık 
volcanics of Lower- Middle Miocene (intermediate lavas and pyroclastic rocks) and alluvium 
of Quaternary (pebble, sand, silt and clay).  
 

 
Figure 1: Location of study area and spatial distribution of landslides. 
 

A Mediterranean climate 
dominates the study area 
with annual rainfall of 665 
mm usually received during 
the months of November, 
December and January. The 
hottest month is July with an 
extreme maximum 
temperature of 41.3 oC. 
February is coldest month 
with an extreme minimum 
temperature of -6.3 oC.   
 

 
The natural vegetation of the area comprises of pine tree (Pinus brutia, Pinus nigra) and some 
species of oak (Querqus) and maquis. 
 
In the area, a total of 84 landslides have been determined from topographic maps and field 
surveys (Table 1, Fig. 1). All the landslides were classified into five types which are rotational 
slides, rock fall, debris flow, earth flow and topple (Table 1, Fig. 2). Some statistical 
properties of landslides are given in Table 1. Rotational movements represent 42% of the total 
landslides. They have the highest area with 73.3% (2979800 m2) of the total landslide area. 
Rock falls represent 23.8% of the total movements and cover a total area of 21.1%. Debris 
flow, earth flow and topple have less area compared the first two types (Table 1). According 
to Zezere (2002), different types of landslides have neither the same magnitude nor equal 
damaging potential. Furthermore, technical strategies to mitigate land sliding also depend on 
landslide typology. These are additional reasons to discriminate between different types of 
slope movements when assessing landslide susceptibility and hazard. However in this case, 



for the statistical analysis, landslide typology has not been mentioned due to the low number 
of landslides. 
 

Table 1: Some statistical properties of landslides. 
Types No % of  

Total 
Area Min. 

(m2) 
Area Max.  

(m2) 
Total 

Area (m2) 
% of  

Total Area 
Rotational Slide 42 50 590 338519 2979800 73.3 
Rock Fall 20 23.8 1567 262427 857093 21.1 
Debris Flow 15 17.8 641 45677 183800 4.6 
Earth Flow 4 4.8 4350 10985 28671 0.7 
Topple 3 3.6 3301 3887 10560 0.3 
Total 84 100 590 338519 4059924 100 

 

 
Figure 2: Examples of landslide types in the area (Photos by H. Ozdemir). 

 

3. Data Collection and Database Construction 
The construction of a cartographic database, comprising of the eleven maps used for landslide 
susceptibility assessment, was based on three different tasks: 1) digitizing, editing and 
analyzing of analog maps, 2) visual interpretation and classification of the satellite images, 
and 3) detailed field surveying (Fig. 3).   
 

 
Figure 3: Flowchart of general methodology. 

Topographical maps scaled 1:25000 was 
registered in the UTM projection plane 
(ED 50 Zone 35 N) and digitized in 10 m 
contour interval. The digital elevation 
model (DEM) was created from 10 m 
contour lines by a linear interpolation. 
Some layers were produced using the 
DEM, including slope angle, aspect and 
surface curvature on the basis of a 
moving 3x3 cell window. These criteria 
are proven to be predisposing factors for 
landslide activity. A pixel size of 10 m 
(100 m2) was adapted to the DEM layer 
as well as the other parameters presented 
in Table 2. 

 
Visual interpretation based on filtered image products, band ratio and supervised classification 
was the main techniques applied in the analysis of the RS data. Finally, some predisposing 
factors were prepared for susceptibility assessment using RS techniques. 
 
The slope angle represents the gravitational force component and as such regulates 
mobilization vectors within a hill slope (Catani et al., 2005). It is therefore one of the most 
important driving parameters in landslide analysis. Derived from DEM, the slope angle layer 



was classified into 5 classes (Table 2, Fig. 4) in order to more accurately represent site 
conditions. The aspect layer, also based on the the DEM, represents the angle between the the 
Geographic North and horizontal plain for a certain point and is classified by 8 major 
orientations (N, NE, E, SE, S, SW, W, NW) with the addition of flat areas. The transverse 
slope profile is an important variable that controls the superficial and subsurface hydrological 
regime of the slope (Zezere et al., 2004).  
 

Table 2: Attribute data of parameters for susceptibility. 

 
ID 

Parameter 
Subclasses ∑Pix Pix. No in 

Landslides 
Density in 
Subclass 

Indeks 
 MethodWi 

 Elevation     
1 0-250 2111377 4617 0.00219 -1.19018 
2 250-500 1682408 22299 0.01325 0.60992 
3 500-750 1623388 11803 0.00727 0.00968 
4 750-1000 259327 2141 0.00826 0.13734 
5 1000-1290 27244 243 0.00892 0.21421 
 Curvature     
1 -0.39- (-0.01) Concave 704698 7386 0.01048 0.37539 
2 (-0.01)-0.006  Strait 3759078 22823 0.00607 -0.17072 
3 0.006-0.34 Convex 1239967 10894 0.00879 0.19953 
 Lithology     
1 Tufe 15723 15 0.00095 -2.02537 
2 Alluvium 989814 20 0.00002 -5.88610 
3 Permien Olistolite 9647 0 0  
4 Granitic Pluton 387308 874 0.00226 -1.15872 
5 Metagrovacs 626052 384 0.00061 -2.46838 
6 Andesite and Tufe 2233032 24172 0.01082 0.40732 
7 Alluvium Old 11443 0 0  
8 Neogen Sediment 367997 880 0.00239 -1.10279 
9 Epimetamophise 149456 262 0.00175 -1.41447 
10 Hornfles, Granotit 24343 0 0  
11 Limestone 224558 8463 0.03769 1.65531 
12 Conglomerate 113447 1596 0.01407 0.66996 
13 Dasite and Riolite 495875 3950 0.00797 0.10160 
14 Poligenic Aglomerate 55397 487 0.00879 0.19953 
 Slope (o)     
1 0-2 1242894 471 0.00038 -2.94167 
2 2-15 1900495 12825 0.00675 -0.06454 
3 15-25 1742484 13876 0.00796 0.10035 
4 25-45 812712 12970 0.01596 0.79600 
5 45-< 5158 961 0.18631 3.25333 
 Aspect     
1 Flat  (-1) 378238 237 0.00063 -2.43612 
2 N  (337.5-22.5) 614889 4916 0.00799 0.10411 
3 NE (22.5-67.5) 439101 5783 0.01317 0.60386 
4 E (67.5-112.5) 492395 7713 0.01566 0.77703 
5 SE (112.5-157.5) 620659 8238 0.01327 0.61142 
6 S (157.5-202.5) 578782 2913 0.00503 -0.35866 
7 SW (202.5-247.5) 715914 2311 0.00323 -0.80160 
8 W (247.5-292.5) 921288 3931 0.00427 -0.52247 
9 NW (292.5-337.5) 942478 5061 0.00537 -0.29325 
 Land Use/Cover     
1 Forest 2027098 25667 0.01267 0.56516 
2 Iron mine 3392 0 0  
3 Agricultural Area 280656 21 0.00007 -4.63334 
4 Maquis Area 793343 7124 0.00898 0.22092 
5 Grass Area 243237 931 0.00383 -0.63122 
6 Olive agriculture  852366 2344 0.00275 -0.96248 
7 Settlement- Barren land 1499762 5006 0.00334 -0.76811 
 NDVI     
1 -0.56-0.067 1471161 4478 0.00304 -0.86222 
2 0.067-0.28 2001613 10931 0.00546 -0.27663 
3 0.28-0.79 2228462 25694 0.01153 0.47087 
 Rainfall     
1 581-704 1571100 0 0  
2 7704-837 1550400 15147 0.00977 0.30524 
3 837-963 1320700 13806 0.01045 0.37252 
4 963-1133 1118200 11288 0.01009 0.33746 
5 1133-1429 142900 862 0.00603 -0.17733 
 Distance to Lineament     
1 500 2546719 21474 0.00843 0.15772 
2 1000 1493490 11770 0.00788 0.09025 
3 1500 704122 4779 0.00679 -0.05863 
4 2000 333655 1141 0.00342 -0.74444 
5 2000< 626106 1939 0.00310 -0.84268 
 Distance to Roads      
1 50 1375704 7910 0.00575 -0.22488 
2 100 1114109 6653 0.00597 -0.18733 
3 150 867875 5779 0.00666 -0.07796 
4 200 657163 4944 0.00752 0.04349 
5 200< 1689241 15817 0.00936 0.26236 
 Soils (HSG)     
1 A 25068 0 0  
2 B 229059 0 0  
3 C 846496 86 0.00010 -4.27667 
4 D 4602840 41017 0.00891 0.21309 

Profile curvature represents the rate of 
change of slope for each cell in the 
direction of dipping (Ayalev et al., 
2004). Profile curvature is divided by 
concave, convex and flat topographic 
surfaces. A positive curvature indicates 
that the surface is upwardly convex at 
that cell. A negative curvature indicates 
that the surface is upwardly concave at 
that cell. A value of zero indicates that 
the surface is relatively flat (Table 2).  
 
Lithology was obtained from the 
geological map of the region 
(1:100000). The lithology is a 
fundamental instability factor in 
landslide analysis. The geological 
boundaries of the 14 lithological units 
(Table 2, Fig. 4) were verified and 
validated through fieldworks.  
 
Road maps were obtained from 
topographical maps of the basin. Most 
landslides occurred on cut slopes or 
embankments alongside roads in 
mountainous areas. The construction of 
the main and secondary roads on steep 
slopes can be considered as the most 
important causative factor in the basin. 
In this study, a 50 m buffer (25+25) 
was applied to all types of roads based 
on field work observation. Areas in 
excess of 200 m above the road cut 
were not considered in the study (Table 
2, Fig. 4).   
 
Land use/cover greatly influences slope 
behaviour at every scale. In this study 
land use/cover map was obtained from 
Spot XS (2005) satellite images in 
conjunction with supervised 
classification and field works. 

 



Land use/cover was classified in 7 class units which are forest area, iron mine, agricultural 
area, maquis area, grass area, olive field, and settlement – barren land (Table 2, Fig. 4).  
 

 
Figure 4: Parameter maps for landslide susceptibility. 

 Tectonic activity is 
differentiated with elevation 
range in the study area. 
Ozdemir, (2007) determined 
that tectonic variations are 
notable at 250 m intervals and 
therefore the range of elevation 
used in this study was 0-250, 
250-500, 500-750, 750-1000 
and 1000-1290 m (Table 2, 
Fig. 4)  
 
Soil data was obtained from 
GDRS (General Director of 
Rural Services) in 1:25000 
scales. Based on their 
hydrologic properties for water 
conditions and infiltration 
capacity, four units were 
classified. A indicates that the 
soil has high infiltration rates 
and low runoff potential 
whereas D indicates that the 
soil has very slow infiltration 
rates and high runoff potential. 
B and C units are close to A 
and D respectively (Table 2, 
Fig. 4). 
 

 
NDVI (Normalized Difference Vegetation Index) data was obtained from Spot XS satellite 
images of the area. NDVI represents the vegetation cover and it is an index derived from 
reflectance measurements in the red and near infrared portions of the electromagnetic 
spectrum. This index describes the relative amount of active, green photosynthetic biomass 
present at the time the image was captured. NDVI was described in three subclasses which are 
dense vegetation, sparse vegetation and non vegetated areas (Table 2, Fig. 4).  
 
A lineament map was created using 4, 5, 7 bands of Landsat ETM+ dated 2000 (Akhir et al., 
1997; Voldai, 1995; Suzen et al., 1998). A Sobel directional filter was applied to the bands. 
Using fault lines obtained from geological maps of the area and the lineament, a 500 m (250 
m+250 m) buffer was used to determine effect area. Distances in excess of 2000 m from the 
lineament were not considered in the study (Table 2, Fig. 4).   
 
As rainfall is one of the triggering factors for landslide activity in the area, rainfall data was 
obtained from meteorological stations located near the basin. Using interpolation techniques 
an annual rainfall map was created for the entire basin. Natural break classification was 
applied to rainfall data (Table 2, Fig. 4). 
 



4. Landslide Susceptibility Assessment and Validation 
 
The applied statistical index method for the susceptibility assessment is based on a frequency 
analysis. This method simply defines the importance of a parameter subclass on landslide 
occurrence according to the spatial distribution of pixel of the considered parameter in relation 
to the landslide pixels. A standardization of the density values can be obtained by relating 
them to the overall density in the entire area. In this study the landslide density for each class 
is divided by the landslide density in for the entire map. The natural logarithm is used to give 
negative weights when the landslide density is lower than normal and positive when it is 
higher than normal (Van Wasten, 1997). By combining eleven maps of weight-values, a 
susceptibility map was created. According to the description, Wi is expressed as in following 
equation: 

 
 
 
 
 
 
 

Where, 
Wi= the weight given to a certain parameter class (e.g. lithology, or a slope class) 
Densclas= the landslide density within the parameter class. 
Densmap= the landslide density within the entire map. 
Npix(Si)= number of pixels, which contain landslides, in a certain parameter class. 
Noix(Ni)= total number of pixels in a certain parameter class. 
 
Wi values were calculated according to the pixel values tabulated in Table 2. The result of the 
calculation is given in Fig. 5a as non-classified. Final values of pixels are changing between   
-23.46 (low susceptibility) to 8.71 (high susceptibility). Classification of the final map into 
different susceptibility classes is very difficult.  For this purpose, some authors use different 
kinds of techniques such as expert opinion, standard deviation, natural break, quantiles, equal 
interval etc. In this study, we considered cluster analysis based on iterative minimum distance 
of each pixel in five classes (Forgy, 1965) using SAGA GIS software (Fig. 6).   
 
As is shown in Fig. 5b the five categories correspond to five relative scales of landslide 
susceptibility, namely none (or extremely low), very low, low, medium and high. In order to 
validate the results of the susceptibility assessment, the same landslide data set was used. 
Interpretation of Fig. 6a and b allow the identification of the following susceptibility classes: 
 

I) The high susceptibility class includes 2 114 866 pixels (the largest susceptibility 
values that cover 37.22 % of study area) and 81.15% of the area of landslides; 

II) The medium susceptibility class includes 1 882 317 pixels (33.13% of the study area) 
and includes 17.94% of landslides. 

III) The low susceptibility class includes 636 979 pixels (11.21% of the study area) and 
includes 0.89% of landslides. 

IV) The very low susceptibility class includes 438 928 pixels (7.72% of the study area) 
and includes 0.03% of landslides. 

V) The extremely low susceptibility class includes 609 147 pixels (10.72% of the study 
area) with no landslides located in this area (0.00%). 
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Figure 5: A) Non-classified landslide susceptibility map of Havran River basin B) Landslide susceptibility map   
                of Havran River basin, classified according to minimum distance clustering method. 
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Figure 6: A) Distribution of susceptibility classes B) Percentage of landslide distribution 
                                    in susceptibility classes. 
 
5. Conclusion 
 
The spatial distribution of landslides is a result of the interaction of many parameters. To 
create an accurate susceptibility map, proper parameters must be used. In this study eleven 
parameters namely, elevation, curvature, lithology, slope, aspect, land use/cover, NDVI, 
rainfall, lineament, roads and soil were considered. To create some parameters RS techniques 
were used. A method called statistical index method was used to extract the weight of each 
parameter. This method pointed out the importance of lithology and slope parameters above 
others, on landslide occurrence. The results of the entire analysis and evaluation allowed us to 
divide the study area into five zones of susceptibility, namely none or extremely low 
(10.72%), very low (7.72%), low (11.21%), medium (33.13%) and high (37.22%). Validation 
of the results, using same landslide data set, showed that the high susceptible zone includes 
81.15% of landslide areas. All these studies have been done on a basin scale as it allows us to 
determine general probable landslide areas. In order to obtain a more precise result for use on 
a local scale a deterministic approach should be applied.    
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