Working with custom
JavaScript functions

~In ArcGIS Survey123 Forms

We will start shortly...

Ismael Chivite Travis Butcher

Change
Presenter

{:{-Settings

» Dashboard
» Attendees: 4 of 1001 (max)]
¥ Audio

omputer audio =ull

0 Phone call

MNo audio
0 mm

Built-in Microphone

» Polls
» Handouts: 0 of 5
» Chat

Dry Run Through: Python Map Automation
and Beyond
Webinar ID# 274-272-123
@ This session is being recorded.

& Golo

Working with custom
JavaScript functions

" in ArcGIS Survey123 Forms

Ismael Chivite Travis Butcher

Agenda

- The Basics, by Ismael Chivite (20 minutes)

- Why should you care about custom JS functions in Survey123?
- How to work with custom JS functions

- Demonstration

- Limitations

- Advanced topics, by Travis Butcher (20 minutes)
- Getting serious with webpack
- Demonstration

- Where to learn more
- Live Q&A

Why JavaScript functions in ArcGIS Survey123?

- Complement XLSForm expression syntax

- Use in calculation, constraint and relevant expressions
- Working with data in feature services
- Spatial analysis
- Work with values across repeats
- Access third-party APIs
- Build complex calculations
- Parse complex data structures
- Data validation rules and constraints

- Supported in the Survey123 field app and web app

Work with third-party APIs

// Query the Open Weather API: https: penweathermap.org/api
n runWeatherCalcs(lat, lon, key){
// Check to make sure we have latitude, longitude and an API key
if (lat == null || lon == null || key == null) {

return H

}

[/ Create the request object

var xmlhttp = new XMLHttpRequest();

// Format the URL with the input parameters

let lat_param = " lat=%{lat} ;

let lon_param = " lon=%{lon} ;

let key param = " APPID=%{key} ;

let format_param = "forma M

let units_param = "units=imperial’

let parameters = [lat_param,lon_param,key_param,format_param,units_param].join("
var url = “https://api.openweathermap.org/data/2.5/weather?${parameters} ;

[/ Make the reguest
xmlhttp.open("GET",url,false);
xmlhttp.send();

// Check the response. 200 indicates success from the API

if (xmlhttp.status!
return null;
} else {
// Check the information in the response for an error
var responsel]SON=]SON.parse(xmlhttp.responseText)
if (responselSON.error){
return responselSON.error;
} else {
if (responselSON){
return JSON.stringify(responselSON);

M

}

Administrative Divisions

Please set a location
{} 33°50'N 116°30'W

Work with a feature service

%
(4
e

-

// Query a feature layer and returns the feature that intersects the location 'TE_'_'I'I'l'g_'I:?“‘ Y
function featureBylocation(layerURL, location, token) { " Alrport. %
/f Output value. Initially set to an empty string (XLSForm null)
let outValue = ""; Palm Springs %—3

2

%
'?a

// Check to make sure both layerURL and location are provided
if (layerURL == null || layerURL === "" || location == null || location === "") {
/f The function can't go forward; exit with the empty value

} return lncatinn_; {llattrl-butesll:{llFan:
933,"NAME":"California","COUNTRY":"United
// The coordinates will come in as ~“<lat> <lon> <alt> <acc> . States","ISO_CODE":"USCA" "ISO_CC":"US"."ISO_SUB"

// We need <lon>,<lat> for the query "CA","ADMINTYPE":"State","DISPUTED":0,"NOTES":"
// Note that I'm using the relatively new ~ ~ string that lets me place variables ${var} " AUTONOMOUS™ 0 "COUNTRYAFFE":"United

let coordsArray = location.split(” "); oo e
let coords = ~${coordsArray[1]},${coordsArray[@]} ; States”,"CONTINENT":"North

America","LAND_TYPE":"Primary land","LAND_RANK":
5,"Shape_ Area":647615925620.137,"Shape__Length":
// Set qu query parameters 7058203.1681138}}

let f = "f=json";

let geometry = " geometry=%${coords} ;

let geometryType = "geometrylype=esriGeometryPoint”; ISO CODE value

let inSR = "inSR=4326";

let spatialRel = "spatialRel H USCA

let outFields = "outFiel

let

let returnCount = "returnCount=1"; NAME attribute

let parameters = [f,geometry,geometryType,inSR,spatialRel,outFields, returnGeometry, returnd .)

if (token) { (_,::‘I|IT(:I'I"|IE
parameters = parameters + ~&token=${token} ;

The 1st level admin area feature the location is in

}
let url = “${layerURL}/query?%${parameters} ;

[/ Create the request object
let xhr = new XMLHttpRequest();

5:50

ol * @

Work with repeats X JavaScript Examples & =

v Working with Repeats

Fruits

Quantity

function HasDups (myArray) {
return new Set(myArray).size '== myArray.length;

}

type name label relevant
begin repeat fruits Working with Repeats
select_one fruits fruit Fruits
decimal qty Quantity
end repeat

note Fruits repeated pulldata("@javascript”, "S.js", "HasDups", ${fruit})

JavaScript functions in ArcGIS Survey123

- Use the pulldata(" @javascript") function to execute JavaScript
- Often used in conjunction with pulldata(" @json")

- Scripts tab in Connect for managing JS files

- JavaScript files live in the scripts survey folder

JavaScript pulldata() function in XLSForm

Execute a : Function
. : Function name
JavaScript function parameter

pulldatad

JavaScript Function
file name parameter

XLSForm sample in Connect

ArcGls s

New Survey
Title

My JavaScript Survey

Table name will be: My_JavaScript_Survey

Select an initial XLSForm design

o
e |

javascript

“ommunity JavaScript

Ay surveys . .
y : This sample demonstrates how to incorporate your own

Ny organization JavaScript functions in a survey. It includes several
eature service example scripts for working with repeats, feature
O File APls. For more information, see this

f, 20 October 2020 1:59:23 PM AUS Eastern

XLSForm sample in Connect

JavaScript Examples

» Hello World

» Smart Sum

» Working with a Feature Service

» Working with a Third-Party API - Vehicle VIN

» Working with a Third-Party APl - Open Weather

» Working with Repeat Data - Standard Deviation

» Working with Repeat Data - Calculating a Convex Hull

JavaScript {

JavasScript
functions

Create a new script to get started.

+ New script

Limitations

- JavaScript functions are not supported in public surveys

- Signed in users must be members of the same organization as the survey’s author
- You cannot access local files

- Asynchronous calls are not supported

- Document Object Model (DOM) is not supported

- Frameworks such as JQuery, Ember, and Angular are not supported

- A pulldata(" @javascript") function cannot be called inside a pulldata(" @json")
function in the Survey123 web app

Learn more (The Basics)

- Esri Community blog post:
- Extending Survey123 smart forms with custom JS functions

- Documentation:
- JavaScript functions in survey forms

- JavaScript XLSForm sample in Survey123 Connect

https://community.esri.com/t5/arcgis-survey123-blog/extending-survey123-smart-forms-with-custom-js-functions/ba-p/898782

Agenda

- The Basics, by Ismael Chivite (20 minutes)

- Why should you care about custom JS functions in Survey123?
- Common uses — with examples!

- Demonstration

- Limitations

- Advanced topics, by Travis Butcher (20 minutes)
- Getting serious with webpack
- Where to learn more

. Live Q&A

%avaScript

functions with

"7 Webpack

e e Getting serious with webpack

Js

S

—> .Sass

R

.Sass

3

STATIC ASSETS

S WITH DEPENDENCIES

JavaScript functions in ArcGIS Surveyl123 with Webpack

- Use third party libraries not included JavaScript
- Bundles function to single library to include with form

- Allows to store functions separately and reuse across multiple form easily

EEEEEEEEEEEEEEEEEEEE

bundle your scripts

Demo: Surveyl1l23 with Webpack

Learn more (Advanced)

- GitHub Repository
- https://github.com/EsriPS/survey123-webpack

- Developer Tech Session
- https://www.youtube.com/watch?v=iahSB3P4q1A

- WebPack
- https://lwebpack.js.org/

https://github.com/EsriPS/survey123-webpack
https://www.youtube.com/watch?v=iahSB3P4q1A

Live Q&A

