
MRF as a Cloud Optimized Raster Format and LERC Compression

P. Becker

Esri, 380 New York St, Redlands, CA, 92373, USA

17th December 2015

KEY WORDS: Raster Format, Image Format, Compression, Cloud Storage, MRF, LERC, Controlled Lossy Compression

ABSTRACT:

As data management and image analysis move away from a traditional, desktop environment into a cloud-based platform, the file

formats which we have relied on until now (such as .tif and .nitf) are no longer optimal because they assumed low latency file access

or required a separate server to access the data.

This paper provides details of Meta Raster Format (MRF), a newly evolving image storage format that is optimized for cloud

environments, and Limited Error Raster Compression (LERC), an associated compression method that provides faster access to

imagery and rasters. Despite the falling cost of storage for large data volumes, there is still significant value in compression. Lossless

or controlled lossy compression is necessary so that imagery can be analyzed in an accurate and meaningful way and also to exploit

the ever-increasing dynamic range of sensors. Compression decreases the data volumes stored and reduces the data transferred, but

there is a tradeoff with the amount of processing power required to decompress. LERC’s very efficient algorithm results in very low

processing requirements, with very good compression, while maintaining data values within specified tolerance. The decompression

can also be implementation in web browsers using JavaScript. The MRF storage format and LERC compression will help resolve

some of the challenges of big image data on the internet.

1. MANUSCRIPT

1.1 Accessing imagery

Image processing and analysis has changed significantly over

the last 15 years. Traditional desktop image processing

packages were designed to process one image at a time.

Similarly much image processing was done in a sequential

mode one image at a time. The massive increase in computation

performance, storage and processing technology has changed

image processing and analysis. Cloud infrastructures now

enable massive volumes of imagery to be stored and accessed

with many processes running in parallel. ArcGIS Image Server

is an example of technology that enables large collections of

imagery to be quickly accessed with the server applying a wide

range of on-the-fly functions to transform the source pixels into

valuable information products. These functions apply both

geometric and radiometric transformations to the pixels, but

require the servers to very quickly access sets of pixels from a

large collection of images or rasters. A typical scenario involves

a user zooming into an area of interest to visualize a specific

band combination from multispectral imagery or the creation of

a temporal NDVI (Normalized Difference Vegetation Index)

profile for an area of interest.

The dynamic capabilities of Image Server can return requests

from a client app that specify the processing to be applied on

the original data. A single copy of the source data can thus be

used to derive a large range of information products without the

need to store the intermediate datasets. In this way the volume

of data stored is significantly reduced. Another access mode is

to break the data into tiles and enable client applications to

request and download specified tiles. Only the required tiles are

transmitted to the client, which then performs the required

processing and display. Typically tiled access is used for

returning JPG or PNG tiles for display as background base

maps. As the processing capabilities of web clients increases, so

does the need to transmit data with greater radiometric

resolution and spectral capabilities.

1.2 Cloud Raster Considerations

Traditional image formats were designed long before cloud

computing was conceived. The objective for the formats was to

handle the traditional desktop type access. Moving data and

image processing to the cloud presents both an opportunity and

a challenge with respect to the storage format. Once in the cloud

the mode of data access relies on HTTP interfaces to extract the

required pixels for example with ArcGIS REST API, OGC

WMS, WCS or the Amazon S3 REST API.

There are three design criteria for raster formats in the cloud:

- The format in which the data is stored needs to be

interoperable with multiple applications.

- The data does not necessarily need to remain in its original

format.

- The original pixel data must be accessible as part of a

download process.

The focus changes to ensuring that cloud based processing tools

get fast access to the pixels as well as associated metadata.

Physically having the data on a personal computer is a lower

priority.

Cloud storage provides additional challenges. Most cloud

infrastructure utilizes object storage as low cost storage

medium, which is very compelling for the large volumes of

imagery data. Object storage is inherently elastic, but has higher

latency than traditional file systems and this can influence

performance. Access can be optimized by minimizing the

number of requests that are made to identify and extract a group

of pixels.

In addition to the broad design criteria listed above, there are

more specific requirements that must also be fulfilled:

- Be accessible from cloud storage such as AWS S3 or Azure

Block Storage as well as enterprise storage systems such as

NAS and SAN.

- Handle very large volumes of data including large numbers of

scenes/images/rasters.

- Enable fast random access in terms of both scale and extent.

- Be able to return many simultaneous requests with direct

access and streaming.

- Support both georeferenced of non-georeferenced imagery

from satellite, aerial or UAS sensors.

- Support modern image sensors and scientific data with high

bit depth and a large number of bands.

- Support different compression methods.

- WORM (Write Once Read Many) access can be assumed as

such scenes are typically not modified.

1.3 Meta Raster Format

Esri has identified the Meta Raster Format (MRF) designed by

NASA JPL as a highly optimal format due to its simple and

clean design, cloud optimization, and extensibility.

MRF is a very simple format for tiling imagery. Its original

purpose was as a high performance web tile service storage

format. MRF is optimized for fast reading and splits a raster

dataset into 3 separate files:

- Metadata file (.MRF) – XML file containing key properties

such as the number of rows & columns, data type, tiling, tile

packing, projection and location information. This file is

purposely kept small.

- Data file – File containing tiles of imagery data. Tiles may be

fully formed raster images such as PNG, JPEG and TIF, or raw

data, possibly compressed using Deflate or other compression

algorithms. Esri has also added LERC compression as a tile

encoding (see below).

- Index (.IDX) – Very simple binary index of tile offsets and

sizes within the data file, establishing the geometric

organization of the tiles.

The extensions for the files are optional and can be changed if

required. Since MRF is a GDAL format, additional metadata

not directly handled by MRF but supported by GDAL can be

stored in .aux.xml (as defined by GDAL) or other metadata

standards defined by source data products. Typically such

metadata gets ingested into a database (e.g. a mosaic dataset)

and is only accessed from the source during the initial processes

that crawl for the metadata. MRF rasters can include internal

reduced resolution pyramids with factor 2 or 3, created using

nearest or average down sampling.

Splitting the raster into three files accelerates access to the data

tiles, because it enables optimization of the file locations on

different classes of storage and it helps with caching. In its

simplest implementation, copies of the small MRF and IDX

files can be stored on low latency storage, while data files

remains on slower storage. As a result when access to a tile is

required, all the required metadata and the index can be quickly

read with only limited data requests to read from the slower

storage. In many cases this increase data access performance by

50%. In the GDAL implementation, access to remote files can

be achieved using VSICurl.

The MRF GDAL driver is open source and is available on

Github. Esri has been contributing to its development and has

integrated it into ArcGIS 10.4.

MRF provides a way of optimizing access to the millions of

scenes from satellite, aerial and UAS sensor. It has a number of

advantages over the more complex traditional file formats, as

well as key value map raster implementations such as NoSQL

which are more suitable for dynamically changing data sets.

MRF does have its limitations. It is not ideal for storing a

massive disparate datasets, such as a single raster to define 1m

resolution imagery of the entire globe. It is also not optimized

for multi-dimensional datasets or for environments where

multiple processors need to write to a single rasters, as may be

the case for the output from raster analysis.

1.4 Compression

Compression of the data is important as it reduces both the

storage costs and transfer volume. The reduction in data transfer

volume can speed up access, on the condition that the CPU load

required to decompress the imagery is low. One of the issues

with some existing compression types is that the CPU load to

decompress the image becomes a significant factor in the access

speed. In applications where servers are processing massive

volumes of data, the decompression costs become significant.

Similarly, to enable web clients to directly access the data

without plugins, decompression needs to be implemented in the

web browsers and currently JPEG, PNG and GIF are the only

generically supported image formats. Other formats need special

plug-ins else need to be implementable in JavaScript.

We reviewed what lossy and lossless compression methods are

most appropriate for MRF. For imagery of analytical value

lossless compression is required. This is especially true for the

multispectral imagery from high resolution optical satellites and

airborne cameras. A number of lossless compression algorithms

exist including lossless JPEG2000, PNG, Packbits, LZW and

Deflate. JPEG2000, although providing the highest

compression, has by far the highest CPU Load to decompress.

From the other standard compressions, Deflate provides a good

compromise for lossless compression with a relatively low CPU

load.

For lossy compression JPEG2000 is standard that provides

good compression, but is very processor intensive to

decompress. JPEG is the most common lossy compression and

is very efficient. It is primarily used for 8-bit 3-band imagery

and is very fast for typical natural color imagery. It does not

provide as high a compression as some wavelet based

compression methods, but has the advantage of being directly

usable in web applications. A 12bit/channel implementation of

JPEG does exist in GDAL as part of the TIF support, and is

supported in ArcGIS. JPEG12 bit is relatively fast to

decompress and has minimal effect on the pixel texture which is

important for image correlation use for terrain extraction and

segmentation. It is therefore valuable for the compression of

panchromatic imagery where the lossy artefacts have minimal

effect. One recommendation for reducing the size of scenes that

have a higher resolution pan band, is to compress the pan band

using lossy compression while using lossless compression on

the multispectral imagery that is used for analysis. On-The-fly

pan sharpening can then be used gain high resolution

multispectral imagery as required.

Most Lossy compression methods are controlled by a quality

parameter that controls the size of the resulting file, but does

not control the maximum error of the pixels. ‘Controlled

Lossy’ compression enables a tolerance to be defined that sets

the maximum deviation that a compressed pixel may vary from

the original value. This enables data to be highly compressed

while assuring a suitable precision is maintained. A practical

example is the compression of elevation data. Elevation is often

stored as floating point, but the source data often contains noise

that is beyond the accuracy of the measurements. Such data

does not compress well using lossless compression and most

lossy compression methods will result in uncontrolled accuracy

degradation.

1.5 LERC – Limited Error Raster Compression

Esri has developed a new compression method called LERC

(Limited Error Raster Compression) that was designed to

provide such controlled lossy compression, while also being

very efficient, such that it utilizes very few CPU cycles both to

compress and decompress the data. It does not rely on sequence

matching (like LZW, DEFLATE) nor on a space transform

(Wavelet, DCT). The algorithm identifies the appropriate

scaling to be applied to groups of pixels such that the each

group can be quantized and efficiently compressed. The ability

to define a tolerance enables it to be used to compress rasters

such that the resulting accuracy remains as required while

significantly reducing the storage size. The compression

achieved is highly dependent on the variability of data.

Typically high resolution elevation data can be compressed

between 3-8x higher in comparison to deflate when using a

tolerance of 1cm. Compression factors of 8-20x are typically

achieved if a tolerance of 50cm is given.

By setting the tolerance to 0, LERC provides lossless

compression. This lossless compression it typically equivalent

or better than other lossless compression. LERC also includes

an explicit data mask, making it efficient for sparse and

projected swath raster data. It also includes check sums that can

be used to verify the integrity of the data, which can in some

cases be compromised during the copying or moving of massive

data volumes. The simplicity of LERC has enabled it to be

coded in JavaScript and incorporated into web applications that

can work directly on the pixel values. A big advantage of LERC

is its performance for both compression and decompression

which is significantly faster than other compression algorithms

which improves data access and processing.

LERC has been used extensively in ArcGIS for the transmission

of elevation data, but has also found to be very effective for the

compression of all forms of imagery and has been further

enhanced especially to handle 8bit or categorical data.

The source code for LERC has been put into the open source

(see https://github.com/Esri/lerc) under an Apache 2 license.

LERC is patented, but Esri has released the patent to GIS,

terrestrial and extra-terrestrial mapping, and other related earth

sciences applications. LERC can be used to compress imagery

stored in a file format, but also for the transmitting blocks of

pixels to client applications.

To enable LERC to be used for image and raster storage a

container format was required. MRF was found to be an ideal

format and Esri has added support for LERC to the MRF format

and contributed it to the NASA open source implementation of

MRF (see https://github.com/nasa-gibs/mrf)

1.6 Conclusion

MRF provides an optimized format for the storage of imagery in

both cloud and enterprise environments. There are many cases

where it is advantageous to transform the data to MRF when

moving it to cloud or slower access storage environments. MRF

has a simple structure that enables high performant

implementations. For lossy compression MRF currently utilizes

JPEG. For lossless compression None, Deflate, PNG or LERC

compression can be currently used. The LERC compression

provides further advantages in providing both lossless and

controlled lossy compression, while being faster to both

compress and decompress.

https://github.com/Esri/lerc
https://github.com/nasa-gibs/mrf

