
Masked Arrays

NumPy Snippets
Applications and examples...

Published - 2016-04-xx
Dan Patterson

The code to the right provides a
simple example of constructing
arrays which contain nodata
values... masked arrays.

Array a, is a 3x4 array with
nodata values denoted by -99.
A nodata value must be a
number that cannot be a valid
value in a dataset. Often it is
made ridiculously large or small
when used with the
representation of physical
properties (ie. elevation,
temperature)

There are a couple of ways to
create masked arrays, but they
all use the numpy ma (np.ma)
module. In these examples, I
specifically use the
MaskedArray class which uses
a data set, a mask and a fill
value. Array b0 exemplifies
this.

The data can be obtained in
any fashion that can be
employed in conventional
arrays. The mask can the
conditions in another array or
derived from the input data. In the examples, a value of -99 was used and this could represent
anything, perhaps a water body in a digital elevation model.

If you create an array from a masked array, as is the case for arrays b1 and b2, they inherent the
parent array properties. So far the arrays I have created are all 2D arrays. By adding the third
dimension, you can model the changes in space over time. Array c employ's the masked equivalent of
the ndarray vstack function to stack the three arrays. Each array has a shape of (3,4) so the vstack is
simply reshaped to incorporate the 3rd dimension (3,3,4). All the input arrays are nicely stacked in
space like a pad of paper. Too finish off the possibilities, I created a 4th array which has different

Masked Arrays Numpy Snippets Page ! of ! 1 3

coding: utf-8
"""
Script: masked_array_notes.py
"""
import numpy as np
np.set_printoptions(edgeitems=3,linewidth=80,
 precision=2,suppress=True,threshold=5)

a = np.array([0,1,-99,3,4,5,6,-99,8,9,10,11]).reshape(3,4)
m = (np.where(a==-99,True,False)).astype(int)
b0 = np.ma.MaskedArray(a, mask=m, fill_value=-99)
b1 = b0*2
b2 = b0*3
c = np.ma.vstack((b0,b1,b2)).reshape(3,3,4)
c.fill_value = -99
d = np.array([0,-99,2,3,4,5,6,7,8,9,10,-99]).reshape(3,4)
m0 = (np.where(d==-99,True,False))#.astype(int)
e0 = np.ma.MaskedArray(d, mask=m0, fill_value=-99)

args = [a, b0.filled(),
 np.ma.mean(b0), np.ma.mean(b1),
 np.ma.mean(b2), np.ma.mean([b0,b1,b2]),
 c.filled(), np.ma.mean(c,axis=0),
 m.astype(bool), m.astype(int),
 b0.filled(),e0.filled(),
 (b0+e0).filled()]
print(frmt.format(*args))

http://np.ma

Masked Arrays
positions for the nodata values. When working with stacked arrays with different positional nodata
values, they can both be preserved or treated in different ways.

So to continue, some of the properties of the
arrays are presented. Array a is a standard
ndarray from outward appearance and this is
confirmed by its type.

Array b0, is a masked array representation of the
previous array. A masked array consists of data, a
nodata value and a boolean mask indicating which
array positions are occupied by nodata values and
which are not.

The array mask (b0.mask) is a boolean array.
Boolean values can be converted to an integer
counterpart by using a type conversion. This
particular array uses a fill value of -99. The fill
value is used to occupy the -- positions in the
string representation of the array. It is a good
practice to make the nodata and the fill value the
same, however, there is no requirement to do this.

In brief, you can:
• view the array with or without its mask
• view the array in string or filled form
• show the mask as boolean or integer values.

By default, masked arrays only perform operations
on valid array positions, ignoring the values of
nodata but accounting for the reduction in the
number of valid cells.

Some results for array operations are shown to the
right. The simple means obviously don't include
the nodata value of -99 since the derived mean
values would be significantly impacted.

By performing the operation all at once, the overall
mean can be determined.

The mean on a locational basis is obtained from
the stacked array and calculated along the 3rd
dimension (axis=0).

Masked Arrays Numpy Snippets Page ! of ! 2 3

Single means
 np.ma.mean(b0) = 5.7
 np.ma.mean(b1) = 11.4
 np.ma.mean(b2) = 17.1

Mean for all
 np.ma.mean([b0,b1,b2]) = 11.4

Mean on a cell-by-cell basis
 np.ma.mean(c,axis=0)
[[0.0 2.0 -- 6.0]
 [8.0 10.0 12.0 --]
 [16.0 18.0 20.0 22.0]]

>>> a
array([[0, 1, -99, 3],
 [4, 5, 6, -99],
 [8, 9, 10, 11]])

>>> type(a)
<type 'numpy.ndarray'>

>>> b0
masked_array(data =
 [[0 1 -- 3]
 [4 5 6 --]
 [8 9 10 11]],
 mask =
 [[False False True False]
 [False False False True]
 [False False False False]],
 fill_value = -99)

>>> b0.mask
array([[False, False, True, False],
 [False, False, False, True],
 [False, False, False, False]],
dtype=bool)

>>> b0.mask.astype(int)
array([[0, 0, 1, 0],
 [0, 0, 0, 1],
 [0, 0, 0, 0]])

>>> b0.fill_value
-99

>>> b0.filled()

Masked Arrays

When the input arrays have different nodata
locations, the output array will retain their
respective positional locations. In the example, to
the right, a simple addition shows this.

So the rest of masked arrays is more fancy stuff
with most methods and functions just being a
counterpart of the ndarray. It is akin to learning
two languages for the price of one.

That is all for now.

Masked Arrays Numpy Snippets Page ! of ! 3 3

Now, two masked arrays with different
mask locations
b0...
[[0 1 -99 3]
 [4 5 6 -99]
 [8 9 10 11]]

e0....
[[0 -99 2 3]
 [4 5 6 7]
 [8 9 10 -99]]

add b0+e0, note the mask locations
[[0 -99 -99 6]
 [8 10 12 -99]
 [16 18 20 -99]]

