Slope calculation

The rate of change in the x direction for cell *e* is calculated with the following algorithm,

• $[dz/dx] = ((c + 2f + i) - (a + 2d + g) / (8 * x_cellsize))$

The rate of change in the y direction for cell *e* is calculated with the following algorithm:

• $[dz/dy] = ((g + 2h + i) - (a + 2b + c)) / (8 * y_cellsize)$

• $[dz/dx] = ((c + 2f + i) - (a + 2d + g) / (8 * x_cellsize) = ((50 + 60 + 10) - (50 + 60 + 8)) / (8 * 5) = (120 - 118) / 40 = 0.05$

The rate of change in the y direction for cell *e* is:

• $[dz/dy] = ((g + 2h + i) - (a + 2b + c)) / (8 * y_cellsize) = ((8 + 20 + 10) - (50 + 90 + 50)) / (8 * 5) = (38 - 190) / 40 = -3.8$

Taking the rate of change in the x and y direction, the slope for the center cell *e* is calculated using

- $rise_run = \sqrt{([dz/dx]^2 + [dz/dy]^2)} = \sqrt{((0.05)^2 + (-3.8)^2)} = \sqrt{(0.0025 + 14.44)}$ = 3.80032
- slope_degrees = ATAN (rise_run) * 57.29578 = ATAN (3.80032) * 57.29578 = 1.31349 * 57.29578

= 75.25762°