Slope calculation

The rate of change in the x direction for cell e is calculated with the following algorithm,

- $[\mathrm{dz} / \mathrm{dx}]=\left((c+2 f+i)-(a+2 d+g) /\left(8 * x _c e l l s i z e\right)\right.$

The rate of change in the y direction for cell e is calculated with the following algorithm:

- $[\mathrm{dz} / \mathrm{dy}]=((g+2 h+i)-(a+2 b+c)) /\left(8 * y _c e l l s i z e\right)$
- $[\mathrm{dz} / \mathrm{dx}]=\left((c+2 f+i)-(a+2 d+g) /\left(8 * x _c e l /\right.\right.$ size $)=((50+60+10)-(50+60+$ 8)) $/(8 * 5)=(120-118) / 40=0.05$

The rate of change in the y direction for cell e is:

- $[\mathrm{dz} / \mathrm{dy}]=((g+2 h+i)-(a+2 b+c)) /\left(8 * y _c e l / s i z e\right)=((8+20+10)-(50+90+$ 50)) $/(8$ * 5$)=(38-190) / 40=-3.8$

Taking the rate of change in the x and y direction, the slope for the center cell e is calculated using

- rise_run $=\mathrm{V}\left([\mathrm{dz} / \mathrm{dx}]^{2}+[\mathrm{dz} / \mathrm{dy}]^{2}\right)=\mathrm{V}\left((0.05)^{2}+(-3.8)^{2}\right)=\mathrm{V}(0.0025+14.44)$

$$
=3.80032
$$

- slope_degrees $=$ ATAN $($ rise_run $) * 57.29578=$ ATAN $(3.80032) * 57.29578=$ 1.31349 * 57.29578
$=75.25762^{\circ}$

